سنجش کمی نسبی بیان ژن اختصاصی ریسه HWP1 در مهار بیوفیلم کاندیدا آلبیکنس
محورهای موضوعی : میکروب شناسی مولکولیعلیرضا خداوندی 1 , فهیمه علیزاده 2 , مژده شهینی پور 3
1 - استادیار، گروه میکروب شناسی، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج
2 - استادیار، گروه میکروب شناسی، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج
3 - کارشناس ارشد، گروه میکروب شناسی، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج
کلید واژه: نعناعیان, بیوفیلم, ژن HWP1, کاندیدا آلبیکنس,
چکیده مقاله :
سابقه و هدف: کاندیدیازیس یک بیماری های قارچی است که در بیماران دچار ضعف سیستم ایمنی با افزایش همراه بوده است. از دلایل ایجاد مقاومت دارویی در کاندیدا آلبیکنس ایجاد بیوفیلم می باشد. این مطالعه با هدف سنجش نسبی بیان ژن اختصاصی ریسه HWP1 در مهار بیوفیلم کاندیدا آلبیکانس تحت تیمار با موثرترین عصاره خانواده نعناعیان انجام شد. مواد و روش ها: در این مطالعه مقطعی، فعالیت ضد قارچی عصاره های آبی و اتانولی اندام های برگ، ساقه و ریشه گیاهان نعناع، پونه و آویشن باغی جمع آوری شده در یاسوج بر روی کاندیدا با روش های دیسک دیفیوژن و براث میکرودایلوشن ارزیابی و مقایسه شدند. علاوه بر این میزان بیوفیلم مهار شده در حضور موثرترین عصاره با روش رنگ سنجی کریستال ویولت، بررسی مورفولوژی و کمیت نسبی بیان ژن اختصاصی ریسه HWP1 ارزیابی گردید. یافته ها: نتایج حاصل بیانگر تاثیر قابل ملاحظه عصاره آبی ریشه آویشن باغی بر رشد کاندیدا آلبیکنس بود. سلول های تحت تیمار با عصاره آبی ریشه آویشن باغی به طور معنی دار کاهش میزان بیوفیلم را نشان دادند. علاوه بر این، مشاهدات میکروسکوپی، کاهش سلول های تحت تیمار با عصاره و فلوکونازول را تایید نمود. در نهایت عصاره آبی ریشه آویشن باغی موجب کاهش بیان ژن HWP1 گردید. نتیجه گیری: مطالعه حاضر نشان دهنده مکانیسم احتمالی مولکولی تاثیر عصاره آبی ریشه آویشن باغی بر بیوفیلم کاندیدا آلبیکنس بوده است.
Background & Objectives: The incidence of candidiasis has been increased in immune compromised patients. Biofilm formation is counted as the main mechanisms of antibiotic resistance in Candida albicans. The aim of this study was to investigate the effects extractions of Lamiaceae family in quantification of HWP1 gene expression responsible for inhibition of biofilm formation in C. albicans. Materials & Methods: In this cross- sectional study, the antifungal effect of aqueous and ethanolic extractions of leaf, stem and root of Mentha spicata, Mentha pulegium and Thymus vulgar, commercially purchased from Yasooj, was analyzed against C. albicans using disc diffusion and broth microdilution methods. The crystal violet colorimetric method, morphological response and expression pattern of hypha-specific gene HWP1were carried out to investigate the biofilm-inhibitory properties of the best plant extract tested. Results: The data indicated that aqueous root extracts of Thymus vulgaris exhibits high antifungal activity against C. albicans. The aqueous extract of Thymus vulgaris root-treated cells exhibited significant reduction in biofilm growth. In addition, morphological observation of extract of Thymus vulgaris and fluconazole-treated cells confirmed decreases in fungal reproduction. Finally, aqueous root extractions of Thymus vulgaris was shown to down-regulate the expression of HWP1. Conclusion: The results of this study showed the possible molecular mechanism of effects of aqueous root extraction of Thymus vulgaris root in C. albicans on biofilm formation.
1. Odds FC, Brown AJP, Grow NAR. Antifungal agents: mechanisms of action. Trends Microbiol. 2003; 11: 272–279.
2. Kruppa M. Quorum sensing and Candida albicans. Mycoses. 2008; 52: 1–10.
3. Khodavandi A, Harmal NS, Alizadeh F, Scully OJ, Sidik SHM, Othman F, Sekawi Z, Ng KP, Chong PP. Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression. Phytomedicine. 2011; 19: 56–63.
4. da Silva-Rocha WP, Lemos VLB, Svidizisnki TIE, Milan EP, Chaves GM. Candida species distribution, genotyping and virulence factors of Candida albicans isolated from the oral cavity of kidney transplant recipients of two geographic regions of Brazil. BMC Oral Health. 2014; 14: 20.
5. Inci M, Atalay MA, Ozer B, Evirgen O, Duran N, Koksaldi Motor V, Nedret Koc A, Onlen Y, Kilinc C, Durmaz S. Investigations of ALS1 and HWP1 genes in clinical isolates of Candida albicans. Turkish J Med Sci. 2013; 43: 125–130.
6. Finke JS, Mitchel AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011; 9: 109–118.
7. Fayad NK, AL-Obaidi OHS, Al-Noor TH, Ezzat MO. Water and alcohol extraction of thyme plant (Thymus vulgaris) and activity study against bacteria, tumors and used as anti-oxidant in margarine manufacture. Innov Union SB - European Commn. 2013; 4(1): 41–51.
8. Bupesh G, Amutha C, Nandagopal S, Ganeshkumar A, Sureshkumar P, Saravana MK. Antibacterial activity of Mentha piperita L. (peppermint) from leaf extracts–a medicinal plant. Acta agri Slovenica. 2007; 89(1): 73–79.
9. Zarringhalam M, Zaringhalam J, Shadnoush M, Rezazadeh SH, Tekieh E. Inhibitory effect of black and red pepper and thyme extracts and essential oils on enterohemorrhagic Escherichia coli and DNase activity of Staphylococcus aureus. Iranian J Pharm Res. 2013; 12(3): 363–369.
10. Gaeini Z, Taghinezhad M, Sohrabvandi S, Mortazavian AM, Mahdavi SM. Healthful characteristics of pennyroyal essential oil. European J Pharm Sci. 2013; 4(4): 102–107.
11. Naeini A, Khosravi AR, Chitsaz M, Shokri H, Kamlnejad M. Anti-Candida albicans activity of some Iranian plants used in traditional medicine. J Med Mycol. 2009; 19: 168–172.
12. Lund RG, Serpa R, Nascente PDS, Ribeiro GA, Freitag RA, Del Pina FAB. In vitro study on the antimicrobial effect of hydroalcoholic extracts from Mentha arvensis L. (Lamiaceae) against oral pathogens. Acta Scientiarum. 2012; 34(4): 437–442.
13. Pramila DM, Xaviar R, Marimuthu K, Kathiresan S, Khoo ML, Senthilkumar M, Sathya K, Sreeramanan S. Phytochemical analysis and antimicrobial potential of methanolic leaf extract of peppermint (Mentha piperita: Lamiaceae). J Med Plants Res. 2012; 6(2): 331–335.
14. Khodavandi A, Alizadeh F, Namvar F, Rosfarizan M, Chong, PP. Anti-Candida potential of Allium ascalonicum Linn: antibiofilm activity and biomolecular mechanism of action. J Pure Appl Microbiol. 2014; 8(2): 349–356.
15. Theberge S, Semlali A, Alamri A, Leung KP, Rouabhia M. C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W. BMC Microbiol. 2013; 13(1): 246.
16. Raju, SB, Rajappa S. Isolation and identification of Candida from the oral cavity. ISRN Dent. 2011; 487921–487928.
17. Fan Y, He H, Dang Y, Pan H. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1and relevant signaling pathways in Candida albicans. Mycopathologia. 2013; 176: 329–335.
18. Dominic RM, Shenoy S, Baligas S. Candida biofilms in medical devices: evolving trends. Kathmandu University Med J. 2007; 5(3): 431–436.
19. Carretto CFP, Almeida RBDA, Furlan MR, Jorge AOC, Junqueira JC. Antimicrobial activity of Mentha piperita L. against Candida spp. Brazilian Dent J. 2010; 13(1): 4–9.
20. Akbari S. Antifungal activity of Thymus valgaris L. and Origanum vulgare L. against fluconazol-resistant and susceptible Candida albicans isolates. J Med Plants. 2007; 6(1): 53–62.
21. Uppuluri P, Srinivasan A, Ramasubramanian A, Lopez-ribot JL. Effects of fluconazole, amphotericin b, and caspofungin on Candida albicans biofilms under conditions of flow and on biofilm dispersion. Antimicrob Agents Chemother. 2011; 55(7): 3591–3593.
22. Zhang Y, Cai C, Yang Y, Weng L, Wang L. Blocking of Candida albicans biofilm formation by cis-2-dodecenoic acid and trans-2-dodecenoic acid. J Med Microbiol. 2011; 60(Pt 11): 1643–1650.
23. Li DD, Zhao, LX, Mylonakis F, Hu GH, Zou Y, Huang TK,Yan L, Wang Y, Jiang YY. In vitro and in vivo activities of pterostilbene against Candida albicans biofilms. Antimicrob. Agents Chemother. 2014; 58(4): 2344–2355.
_||_
1. Odds FC, Brown AJP, Grow NAR. Antifungal agents: mechanisms of action. Trends Microbiol. 2003; 11: 272–279.
2. Kruppa M. Quorum sensing and Candida albicans. Mycoses. 2008; 52: 1–10.
3. Khodavandi A, Harmal NS, Alizadeh F, Scully OJ, Sidik SHM, Othman F, Sekawi Z, Ng KP, Chong PP. Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression. Phytomedicine. 2011; 19: 56–63.
4. da Silva-Rocha WP, Lemos VLB, Svidizisnki TIE, Milan EP, Chaves GM. Candida species distribution, genotyping and virulence factors of Candida albicans isolated from the oral cavity of kidney transplant recipients of two geographic regions of Brazil. BMC Oral Health. 2014; 14: 20.
5. Inci M, Atalay MA, Ozer B, Evirgen O, Duran N, Koksaldi Motor V, Nedret Koc A, Onlen Y, Kilinc C, Durmaz S. Investigations of ALS1 and HWP1 genes in clinical isolates of Candida albicans. Turkish J Med Sci. 2013; 43: 125–130.
6. Finke JS, Mitchel AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011; 9: 109–118.
7. Fayad NK, AL-Obaidi OHS, Al-Noor TH, Ezzat MO. Water and alcohol extraction of thyme plant (Thymus vulgaris) and activity study against bacteria, tumors and used as anti-oxidant in margarine manufacture. Innov Union SB - European Commn. 2013; 4(1): 41–51.
8. Bupesh G, Amutha C, Nandagopal S, Ganeshkumar A, Sureshkumar P, Saravana MK. Antibacterial activity of Mentha piperita L. (peppermint) from leaf extracts–a medicinal plant. Acta agri Slovenica. 2007; 89(1): 73–79.
9. Zarringhalam M, Zaringhalam J, Shadnoush M, Rezazadeh SH, Tekieh E. Inhibitory effect of black and red pepper and thyme extracts and essential oils on enterohemorrhagic Escherichia coli and DNase activity of Staphylococcus aureus. Iranian J Pharm Res. 2013; 12(3): 363–369.
10. Gaeini Z, Taghinezhad M, Sohrabvandi S, Mortazavian AM, Mahdavi SM. Healthful characteristics of pennyroyal essential oil. European J Pharm Sci. 2013; 4(4): 102–107.
11. Naeini A, Khosravi AR, Chitsaz M, Shokri H, Kamlnejad M. Anti-Candida albicans activity of some Iranian plants used in traditional medicine. J Med Mycol. 2009; 19: 168–172.
12. Lund RG, Serpa R, Nascente PDS, Ribeiro GA, Freitag RA, Del Pina FAB. In vitro study on the antimicrobial effect of hydroalcoholic extracts from Mentha arvensis L. (Lamiaceae) against oral pathogens. Acta Scientiarum. 2012; 34(4): 437–442.
13. Pramila DM, Xaviar R, Marimuthu K, Kathiresan S, Khoo ML, Senthilkumar M, Sathya K, Sreeramanan S. Phytochemical analysis and antimicrobial potential of methanolic leaf extract of peppermint (Mentha piperita: Lamiaceae). J Med Plants Res. 2012; 6(2): 331–335.
14. Khodavandi A, Alizadeh F, Namvar F, Rosfarizan M, Chong, PP. Anti-Candida potential of Allium ascalonicum Linn: antibiofilm activity and biomolecular mechanism of action. J Pure Appl Microbiol. 2014; 8(2): 349–356.
15. Theberge S, Semlali A, Alamri A, Leung KP, Rouabhia M. C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W. BMC Microbiol. 2013; 13(1): 246.
16. Raju, SB, Rajappa S. Isolation and identification of Candida from the oral cavity. ISRN Dent. 2011; 487921–487928.
17. Fan Y, He H, Dang Y, Pan H. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1and relevant signaling pathways in Candida albicans. Mycopathologia. 2013; 176: 329–335.
18. Dominic RM, Shenoy S, Baligas S. Candida biofilms in medical devices: evolving trends. Kathmandu University Med J. 2007; 5(3): 431–436.
19. Carretto CFP, Almeida RBDA, Furlan MR, Jorge AOC, Junqueira JC. Antimicrobial activity of Mentha piperita L. against Candida spp. Brazilian Dent J. 2010; 13(1): 4–9.
20. Akbari S. Antifungal activity of Thymus valgaris L. and Origanum vulgare L. against fluconazol-resistant and susceptible Candida albicans isolates. J Med Plants. 2007; 6(1): 53–62.
21. Uppuluri P, Srinivasan A, Ramasubramanian A, Lopez-ribot JL. Effects of fluconazole, amphotericin b, and caspofungin on Candida albicans biofilms under conditions of flow and on biofilm dispersion. Antimicrob Agents Chemother. 2011; 55(7): 3591–3593.
22. Zhang Y, Cai C, Yang Y, Weng L, Wang L. Blocking of Candida albicans biofilm formation by cis-2-dodecenoic acid and trans-2-dodecenoic acid. J Med Microbiol. 2011; 60(Pt 11): 1643–1650.
23. Li DD, Zhao, LX, Mylonakis F, Hu GH, Zou Y, Huang TK,Yan L, Wang Y, Jiang YY. In vitro and in vivo activities of pterostilbene against Candida albicans biofilms. Antimicrob. Agents Chemother. 2014; 58(4): 2344–2355.