بهینهسازی زنجیرۀ تأمین میعانات نفتی با استفاده از مدل سازی ریاضی و شبیه سازی
محورهای موضوعی : مدیریت بازرگانی- بازرگانیحمیدرضا محمودی 1 , مرتضی بذرافشان 2 , محدثه احمدی پور 3
1 - دانشجوی دکتری، گروه مهندسی صنایع، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.
2 - استادیار، گروه مهندسی صنایع، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.(نویسندۀ مسئول)
3 - استادیار، گروه مهندسی صنایع، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.
کلید واژه: کلمات کلیدی: بهینه سازی, برنامه ریزی ریاضی, مدل سازی, انتشار گازهای گلخانه ای,
چکیده مقاله :
هدف از این پژوهش ارائۀ چارچوبی برای بهینهسازی زنجیرۀ تأمین میعانات نفتی با استفاده از برنامهریزی ریاضی و شبیه سازی است. این تحقیق از نظر هدف جزء تحقیقات کاربردی است، همچنین، از نظر ماهیت، کمی است. زیرا تماماً از ابزارهای کمی مانند روش های مدل سازی ریاضی، شبیه سازی و روش های حل فراابتکاری استفاده شده است. در این چارچوب، هزینه های سرمایه گذاری و عملیاتی و انتشار گازهای گلخانه ای برای خطوط انتقال نفت و گاز را می توان به حداقل رساند تا نیازهای فشار و شبکۀ انتقال برآورده شود. همچنین میتوانیم تولید آلایندهها را در بخشهای مرتبط با زنجیره به حداقل برسانیم. با بهکارگیری یک مورد مطالعۀ واقعی، تمام تصمیمات ممکن برای در نظر گرفتن جنبه های زیست محیطی زنجیرۀ تأمین در نظر گرفته می شود؛ بنابراین، ساختار و تصمیمات زنجیرۀ تأمین عموماً بر دو کارکرد هدف شامل کاهش هزینه های انتقال و نگهداری و آلودگی در تصفیه خانه ها و مراکز توزیع استوار است. نتایج نشان داد که استفاده از مدل پیشنهادی، هزینه ها را تا 31 درصد و انتشار گازهای گلخانه ای را تا 51 درصد کاهش می دهد. همچنین افزایش 8 درصدی ظرفیت میادین و پالایشگاه ها و افزایش 65 درصدی صادرات رخ خواهد داد. با استفاده از نتایج به دست آمده از حل مدل می توان سهم هر فرآوردۀ نفتی را در بهای تمام شده و هر قسمت از زنجیره را در تولید گازهای گلخانه ای تعیین کرد. بر اساس نتایج، نفت بیشترین و روغن ها کمترین هزنیه را دارند. علاوه بر این، پالایشگاه ها بیشترین تأثیر و مخازن ذخیره کمترین تأثیر را بر آلودگی محیط زیست دارند.
In this research, a framework for optimizing the oil condensate supply chain is designed using mathematical programming and simulation. Based on this framework, investment and operating costs and greenhouse gas emissions for oil and gas transmission lines can be minimized to meet pressure and transmission network needs. We can also minimize the production of pollutants in the related parts of the chain. By applying a real case study, all possible decisions are taken into account to consider the environmental aspects of the supply chain. Therefore, the structure and decisions of the supply chain are generally based on two objective functions, including the reduction of transportation and maintenance costs and pollution in treatment plants and distribution centers. The results showed that using the proposed model reduces costs by 31% and greenhouse gas emissions by 51%. There will also be an 8% increase in the capacity of fields and refineries and a 65% increase in exports. Using the results obtained from solving the model, it is possible to determine the share of each oil product in the total price and each part of the chain in the production of greenhouse gases. According to the results, oil is the most expensive and oils are the least expensive. In addition, refineries have the most impact and storage tanks have the least impact on environmental pollution.
طی گزارش سالیانۀ بین¬المللی انرژی در سال 2010 که در سایت http://www.energy.gov موجود است.
طی گزارش سالیانۀ بین¬المللی انرژی در سال 2009 که در سایت http://www.energy.gov موجود است.
Abolghasemian, M., & Darabi, H. (2018). Simulation based optimization of haulage system of an open-pit mine: Meta modeling approach. Organizational resources management researchs, 8(2), 1-17.
Abolghasemian, M., Kanafi, A. G., & Daneshmand-Mehr, M. (2022). Simulation-Based Multiobjective Optimization of Open-Pit Mine Haulage System: A Modified-NBI Method and Meta Modeling Approach. Complexity, 2022.
Abolghasemian, M., Kanafi, A. G., & Daneshmandmehr, M. (2020). A two-phase simulation-based optimization of hauling system in open-pit mine. Iranian journal of management studies, 13(4), 705-732.
Alfares, H. K. (2023). Introduction to Petroleum and Petrochemical Industries. In Applied Optimization in the Petroleum Industry (pp. 1-23). Cham: Springer International Publishing.
Alnaqbi, A., Trochu, J., Dweiri, F., & Chaabane, A. (2023). Tactical supply chain planning after mergers under uncertainty with an application in oil and gas. Computers & Industrial Engineering, 179, 109176.
Andre, J., Bonnans, F., Cornibert, L.J.E.J.o.O.R., (2009). Optimization of capacity expansion planning for gas transportation networks. European Journal of Operational Research, 197(3), 1019-1027.
Attia, A.M., Ghaithan, A.M., Duffuaa, S.O.J.C., Engineering, C., (2019). A Multi-Objective Optimization Model for Tactical Planning of Upstream Oil & Gas Supply Chains. Computers & Chemical Engineering, 128, 216-227.
Azadeh, A., Raoofi, Z., Zarrin, M.J.J.o.N.G.S., Engineering, (2015). A multi-objective fuzzy linear programming model for optimization of natural gas supply chain through a greenhouse gas reductionapproach. Journal of Natural Gas Science and Engineering 26, 702-710.
Balcombe, P., Anderson, K., Speirs, J., Brandon, N., Hawkes, A.J.A.S.C., Engineering,(2016). The natural gas supply chain: The importance of methane and carbon dioxide emissions. ACS Sustainable Chemistry & Engineering 5(1), 3-20.
Behrooz, H.A., Boozarjomehry, R.B.J.E., (2017). Dynamic optimization of natural gas networks under customer demand uncertainties. Energy 134, 968-983.
Benson, D. (1997, December). Simulation modeling and optimization using ProModel. In Proceedings of the 29th Conference on Winter simulation (pp. 587-593).
Borraz-Sánchez C. and Haugland D. (2011). Minimizing fuel cost in gas transmission networks by dynamic programming and adaptive discretization, Computers & Industrial Engineering, 61(2), 364-372, 2011.
Borraz-Sánchez C. and Haugland D. (2011). Minimizing fuel cost in gas transmission networks by dynamic programming and adaptive discretization, Computers & Industrial Engineering, 61(2), 364-372, 2011.
Borraz-Sánchez C. and Ríos-Mercado R. Z., (2009). Improving the operation of pipeline systems on cyclic structures by tabu search, Computers & Chemical Engineering, 33(1), 58-64.
Castillo, V. E., Mollenkopf, D. A., Bell, J. E., & Bozdogan, H. (2018). Supply Chain Integrity: A Key to Sustainable Supply Chain Management. Journal of Business Logistics, 39(1), 38-56.
Chebouba A., Yalaoui F., Smati A., Amodeo L., Younsi K. and Tairi A., (2009). Optimization of natural gas pipeline transportation using ant colony optimization, Computers & Operations Research, 36(6), 1916-1923.
Chung, T., Li K. K., Chen G. J. Xie J. D. and Tang G. Q., (2003). Multi-objective transmission network planning by a hybrid GA approach with fuzzy decision analysis, International Journal of Electrical Power & Energy Systems, 25(3) 187-192.
Ebrahimi, S. B., & Bagheri, E. (2022). Optimizing profit and reliability using a bi-objective mathematical model for oil and gas supply chain under disruption risks. Computers & Industrial Engineering, 163, 107849.
Hamedi M., Farahani Z. and Esmaeilian G., (2011). Optimization in natural gas network planning, Logistics operations and management, 1st Ed. Elsevier, London, 393-420.
Hamedi M., Zanjirani Farahani R., Moattar Husseini M. and Esmaeilian Gh. R., (2009). A distribution planning model for natural gas supply chain, a case study, Energy Policy, 37(3), 799-812.
Jahangiri, S., Abolghasemian, M., Ghasemi, P., & Chobar, A. P. (2023). Simulation-based optimisation: analysis of the emergency department resources under COVID-19 conditions. International journal of industrial and systems engineering, 43(1), 1-19.
Jamal, P. A. (2022). Supply chain optimization in petroleum industry: the case of Russia. In МНСК-2022 (pp. 252-253).
Kabirian A. and Hemmati M. R., (2007). A strategic planning model for natural gas transmission networks, Energy policy, 35(11), 5656-5670.
Lotfi, R., Kargar, B., Gharehbaghi, A., & Weber, G. W. (2022). Viable medical waste chain network design by considering risk and robustness. Environmental Science and Pollution Research, 1-16.
Lu, H., Guo, L., & Zhang, Y. (2019). Oil and gas companies' low-carbon emission transition to integrated energy companies. Science of the total environment, 686, 1202-1209.
Malvestio, A.C., Fischer, T.B., Montaño, M.J.J.o.c.p.,(2018). The consideration of environmental and social issues in transport policy, plan and programme making in Brazil: a systems analysis. Journal of cleaner production 179, 674-689.
Midthun K. Fodstad T. M. and Hellemo L., (2015). Optimization Model to Analyse Optimal Development of Natural Gas Fields and Infrastructure, Energy Procedia, 64, 111-119.
Misra S., Fisher M. W., Backhaus S., Bent R., Chertkov M. and Pan F., (2015). Optimal compression in natural gas networks a geometric programming approach, IEEE Transactions on Control of Network Systems, 2(1), 47-56.
Pirouz, B., & Khorram, E. (2016). A computational approach based on the ε-constraint method in multi-objective optimization problems. Adv. Appl. Stat, 49, 453
Rezaee, A., Dehghanian, F., Fahimnia, B., & Beamon, B. (2017). Green supply chain network design with stochastic demand and carbon price. Annals of operations research, 250, 463-485.
Roy, J., Ghosh, D., Ghosh, A. and Dasgupta, S. (2019). "Fiscal instruments: crucial role in financing low carbon transition in energy systems", Current Opinion in Environmental Sustainability, Vol. 5, No. 2, pp. 261-269.
Tautenhain, C.P., Barbosa-Povoa, A.P., Nascimento, M.C.J.C., Engineering, I(2019). A multiobjective matheuristic for designing and planning sustainable supply chains. Computers & Industrial Engineering 135, 1203-1223.
Vasconcelos, C.D., Lourenço, S.R., Gracias, A.C., Cassiano, D.A.J.J.o.N.G.S., Engineering, (2013). Network flows modeling applied to the natural gas pipeline in Brazil. Journal of Natural Gas Science and Engineering 14, 211-224.
Wang, B., Yuan, M., Zhang, H., Zhao, W., Liang, Y.J.C.E.R., Design, (2018). An MILP model for optimal design of multi-period natural gas transmission network. Chemical Engineering Research and Design 129, 122-131.
Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Belesova, K., Berry, H., Bouley, T., Boykoff, M., Byass, P., Cai, W.,(2018). The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come. The Lancet 392(10163), 2479-2514.
Woldeyohannes A. D. and Majid M. A. A., (2011). Simulation model for natural gas transmission pipeline network system, Simulation Modelling Practice and Theory, 19(1), 196-212.
Wu X., Li Ch., Jia W. and He Y., (2014). Optimal operation of trunk natural gas pipelines via an inertia-adaptive particle swarm optimization algorithm, Journal of Natural Gas Science and Engineering, 21, 10-18.
Zarei, J., Amin-Naseri, M.R., (2019). An integrated optimization model for natural gas supply chain. Energy 185, 1114-1130.