Numerical Simulation of Fluid Flow over a Ceramic Nanoparticle in Drug Delivery System
Subject Areas : Finite Element ModelingMina Alafzadeh 1 , Shahram Talebi 2 , Mojdeh Azizi 3
1 - Academic center for education, culture and research (ACECR), Yazd branch
2 - Department of Mechanical Engineering, Yazd university- Yazd, Iran
3 - Academic center for education, culture and research (ACECR), Yazd branch
Keywords: Nanoparticle, stiffness, Drug delivery, slip boundary condition, Lattice Boltzmann Method,
Abstract :
In this work, for better understanding of drug delivery systems, blood flow over a ceramic nanoparticle is investigated through microvessels. Drug is considered as a nanoparticle coated with the rigid ceramic. Due to the low characteristic size in the microvessel, the fluid flow is not continuum and the no-slip boundary condition cannot be applied. To solve this problem lattice Boltzmann method is used with the slip boundary condition on the particle surface. Furthermore, the effects of Reynolds number, Knudsen number and stiffness (which depends on the kind of material) on drag coefficient are investigated in this paper. The present results show that lattice Boltzmann method can be used accurately to simulate the effect of different parameters on drug delivery. Moreover, the results show that the accuracy of lattice Boltzmann method is the same as second slip boundary condition. Also, the effect of nanoparticle stiffness as the important parameter on the period of time to deliver drugs in system is demonstrated.
[1] Z. Wilczewska, K. Niemirowics, K. H. Markiewicz, H. Car, “ Nanoparticles as drug delivery systems”, Pharmacol. Rep., Vol. 64, 2012, pp. 1020-1037.
[2] S. R. Mudshinge, A. B. Deore, S. Patil, Ch. M. Bhalgat, “Nanoparticles: Emerging carriers for drug delivery”, Sau. Pharm., Vol. 19, 2011, pp. 129-141.
[3] S. A. Kulkarni, S. S. Feng, “Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery”, Pharm. Res., Vol. 30, 2013, pp. 2512-2522.
[4] S. Shukla, F. J. Eber, A. S. Nagarajan, N. A. Difranco, N. Schmidt, A. M. Wen, S. Eiben, R. M. Twyman, C. Wege, N. F. Steinmetz, “ The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods”, Adv. Healthc. Mater, Vol. 4, 2015, pp. 874-882.
[5] Huang, P. J. Butler, S. Tong, H. S. Muddana, G. Bao, S. Zhang, “ Substrate stiffness regulates cellular uptake of nanoparticles”, Nano Lett., Vol. 4, 2013, pp. 1611-1615.
[6] X. He, L. S. Luo, “Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation”, Phys. Rev. E, Vol.56, 1997, pp.6811-6817.
[7] S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond, Oxford University press, 2001.
[8] T. S. Lee, H. Huang, Ch. Shu, “An axisymmetric incompressible lattice BGK model for simulation of the pulsatile flow in a circular pipe”, Int. J. Numer. Methods Fluids, Vol.49, 2005, pp.99-116.
[9] X. He, Q. Zou, “Analysis and boundary condition of the lattice Boltzmann BGK model with two velocity components”, J. Stat. Phys., Vol.87, 1995, pp.115-136.
[10] M. Bouzidi, M. Firdaouss., P. Lallemand, “Momentum transfer of Boltzmann-lattice fluid with boundaries”, Phys. Fluids, vol.13, 2001, pp.3452-3459.
[11] G. Karniadakis, A. Beskok, N. Aulru, Microflows and nanoflows fundamentals and simulation, Springer, 2005.
[12] E. Cunningham, On the velocity of steady fall of spherical particles through fluid medium, Proc. R. Soc. Lond. A83, 1910, pp. 357-365.
[13] N. Davies, “Definite equation for the fluid resistance of spheres”, Proc. Phys. Soc., Vol. 57, 1945.
[14] KoohyarVahidkhah, Nasser Fatouraee, “Numerical simulation of red blood cell
[15] behavior in astenosed arteriole using the immersed boundary- Lattice Boltzmann method”,Int. J. Numer. Meth.Biomed.Eng.., Vol. 28, 2011, pp.239-256.
[16] O. Filippova, D. Hanel, “Grid refinement for lattice- BGK models”, J. Comput. Phys, vol. 147, 1998, pp. 219-228.
[17] F. W. White, Viscous fluid flow, McGraw-Hill, New York, 2006.
[18] S. K. Stefanov, R. W. Barber, M. Ota, D. R. Emerson, “Comparison beween Navier-Stokes and DSMC calculations for low Reynolds number slip flow past a confined micro sphere”, 24th Symposium of Rarefied Gas Dynamics, American institute of physics,2005.
[19] C.Guyton, J. E. Hall, Textbook of medical physiology, Elsevier Saunders, 2006.
[20] Moshfegh, M. Shams, G. Ahmadi, R. Ebrahimi, “A novel surface-slip correction for microparticles motion”, Collids and Surfaces A, Vol. 345, 2009, pp.321-329.
[21] Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher, “ Shape effects of filaments versus spherical particles in flow and drug delivery”, Nat Nanotechnol, Vol. 2, 2007, pp. 249-255.