Normalized laplacian spectrum of two new types of join graphs
Subject Areas : History and biographyM. Hakimi-Nezhaad 1 , M. Ghorbani 2
1 - Department of Mathematics, Faculty of Science, Shahid Rajaee
Teacher Training University, Tehran, 16785-136, Iran
2 - Department of Mathematics, Faculty of Science, Shahid Rajaee
Teacher Training University, Tehran, 16785-136, Iran
Keywords: Join of graphs, normalized Laplacian eigenvalue, integral eigenvalue,
Abstract :
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $\tilde{\mathcal{L}}(G)$is defined as $\tilde{\mathcal{L}}(G)=\mathcal{D}^{-\frac{1}{2}}\mathcal{L}(G)\mathcal{D}^{-\frac{1}{2}}$, where $\mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of$\tilde{\mathcal{L}}(G)$ are called as the normalized Laplacian eigenvalues of $G$. In this paper, we obtain the normalized Laplacian spectrum of two new types of join graphs. In continuing, we determine the integrality of normalized Laplacian eigenvalues of graphs. Finally, the normalized Laplacian energy and degree Kirchhoff index of these new graph products are derived.
[1] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012.
[2] S. Butler, Eigenvalues and Structures of Graphs, Ph.D. dissertation, University of California, San Diego, 2008.
[3] M. Cavers, The normalized Laplacian matrix and general Randic index of graphs, Ph.D. University of Regina, 2010.
[4] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randic index R-1 of graphs, Linear Algebra Appl. 433 (2010), 172-190.
[5] H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum, Discr. Appl. Math. 155 (2007), 654-661.
[6] F. R. K. Chung, Spectral Graph Theory, American Math. Soc. Providence, 1997.
[7] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs: Theory and Applications, Academic Press, New York, 1980.
[8] I. Gutman, The energy of a graph, Steiermrkisches Mathematisches Symposium (Stift Rein, Graz, 1978), Ber. Math. Statist. Sekt. Forsch. Graz 103 (1978) 1-22.
[9] I. Gutman, B. Mohar, The Quasi-Wiener and the Kirchho indices coincide, J. Chem. Inf. Comput. Sci. 36 (1996), 982-985.
[10] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohner, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, Berlin, 2001, 196-211.
[11] M. Hakimi-Nezhaad, A. R. Ashra, I. Gutman, Note on degree Kirchho index of graphs, Trans. Comb. 2 (3) (2013), 43-52.
[12] M. Hakimi-Nezhaad, A. R. Ashraf, A note on normalized Laplacian energy of graphs, J. Contemp. Math. Anal. 49 (5) (2014), 207-211.
[13] G. Indulal, Spectrum of two new joins of graphs and infinite families of integral graphs, Kragujevac J. Math. 36 (1) (2012), 133-139.
[14] E. R. Van Dam, G. R. Omidi, Graphs whose normalized Laplacian has three eigenvalues, Linear Algebra Appl. 435 (10) (2011), 2560-2569.
[15] M. R. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of a graph, MATCH Commun. Math. Comput. Chem. 62 (2009), 561-572.
[16] D. J. Klein, M. Randic, Resistance distance, J. Math. Chem. 12 (1993), 81-95.
[17] X. Li, Y. Shi, I. Gutman, Graph energy, Springer, New York, 2012.
[18] B. Zhou, N. Trinajstic, On resistance-distance and Kirchho index, J. Math. Chem. 46 (2009), 283-289.