تولید فیلم نانوکامپوزیتی تهیه شده از صمغ دانه به/ نانو کریستال سلولز و بررسی ویژگیهای فیلم ترکیبی حاصل
محورهای موضوعی : میکروبیولوژی مواد غذاییطاهره بیضاوی 1 , سارا انصاری 2 , نرجس دانش 3
1 - دانش آموخته کارشناسی ارشد گروه علوم و صنایع غذایی، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران
2 - استادیار گروه علوم و صنایع غذایی، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران.
3 - دانش آموخته کارشناسی ارشد گروه علوم و صنایع غذایی، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران
کلید واژه: صمغ دانه به, فیلم ترکیبی, نانوکریستال سلولز, ویژگیهای فیلم,
چکیده مقاله :
مقدمه: امروزه برای بهبود خصوصیات فیلم های خوراکی از روش های مختلفی استفاده می شود که یکی از موثرترین و رایج ترین اینروش ها، استفاده از پرکننده ها در مقیاس نانومتری و تولید نانوکامپوزیت های پلیمری می باشد. هدف از تحقیق حاضر تولید فیلم ترکیبی تهیهشده از صمغ دانه به و نانوکریستال سلولز و بررسی ویژگی های مختلف فیلم ترکیبی حاصل می باشد. مواد و روشها: در مرحله اول موسیلاژ دانه به استخراج و سپس به همراه درصدهای مختلف از نانوکریستال سلولز (3 ، 5 و 7 درصد) و 35%گلیسرول به عنوان پلاستیسایزر برای تولید فیلم نانوکامپوزیتی به روش قالبگیری مورد استفاده قرار گرفت. سپس خصوصیات فیزیکی،مکانیکی، ممانعت کنندگی، حرارتی و ساختاری فیلم ها مورد بررسی قرار گرفتند.یافته ها: نتایج نشان داد که افزودن نانوکریستال ها موجب افزایش ضخامت فیلم های تولیدی گردید، درحالی که میزان رطوبت، حلالیت ونفوذپذیری به بخار آب فیلم های نانوکامپوزیتی صمغ دانه به با افزایش غلظت نانوکریستال سلولز تا 7% بترتیب به میزان 7.2 ، 29.3 و 5.6 درصدکاهش یافت. افزایش غلظت نانوکریستال همچنین باعث افزایش پارامترهای رنگی a* و b* و کاهش فاکتور L* گردید. با افزودننانوکریستال سلولز میزان مقاومت کششی و مدول یانگ فیلم های نانوکامپوزیتی بطور معنی داری افزایش یافت، درحالی که افزایش درصدافزایش طول معنی دار نبود. دمای انتقال شیشه ای فیلم ها نیز در اثر افزودن نانوکریستال های سلولز افزایش یافت که این موضوع با روشگرماسنجی روبشی افتراقی تعیین گردید. برهمکنش مولکولی میان نانوکریستال های سلولز و صمغ دانه به نیز توسط طیف سنجی مادونقرمز تبدیل فوریه ( FT-IR ) تایید گردید.نتیجه گیری: نانوکامپوزیت های تولیدی در مطالعه حاضر به دلیل خصوصیات فیزیکی مناسب، نفوذپذیری کم به بخار آب و ویژگی هایمکانیکی مطلوب، قابلیت استفاده در کاربردهای بسته بندی را به خوبی دارا می باشند.
Introduction: Today, different methods are being used to improve the properties of edible films; one of the most effective and commonly used ones is using nanometer-sized fillers and the production of polymer nanocomposites. The objective of the present study is to produce quince seed-based nanocomposite film reinforced with nanocrystalline cellulose and to study the properties of the resulting composite film. Materials and Methods: In the first step, the quince seed mucilage was extracted and then, with different concentrations of nanocrystals cellulose (NCC) (3, 5, and 7%) and 35% (w/w) glycerol as plasticizer the nanocomposite film was produced by molding method. Then the physical, mechanical, barrier, thermal and structural properties of the films were examined. Results: Addition of nanocrystals increased the thickness of resulting films but decreased their moisture content, water solubility and water vapor permeability (WVP) to 7.2%, 29.3% and 5.6% when using 7% nanocrystal cellulose. Increasing of nanocrystals concentration in films resulted in an increase in a* and b* and a decrease in L*. Incorporation of nanocrystals also improved the mechanical properties of quince seed gum-based films including tensile strength and young module, whereas elongation at break was not significant. The glass transition temperature of films also was increased by the addition of nanocrystals which was determined by means of differential scanning calorimetry. FT-IR spectra of samples also approved the interaction between nanocrystals and quince seed gum. Conclusion: The produced films exhibited good physical properties, reduced WVP, and enhanced mechanical properties, which are the main properties required for packaging applications.
Abdollahi, M., Alboofetileh, M., Rezaei, M. & Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids, 32, 416–424.
Alboofetileh, M., Rezaei, M., Hosseini, H. & Abdollahi, M. (2017). Improving physical and mechanical properties of sodium
alginate films with clay nanoparticles. Food Science and Technology, 14(5), 313-321[In Persian].
Andrade-Pizarro, R. D., Skurtys, O. & Osorio-Lira, F. (2015). Effect of cellulose nanofibers concentration on mechanical, optical, and barrier properties of gelatin-based edible films. Dyna, 82(191), 219-226.
Angles, M. N. & Dufresne, A. (2000). Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis. Macromolecules, 33, 8344–8353.
AOAC. (1990). Official methods of analyses: 14th Ed., Association of official analytical chemists: Washington. DC. USA.
Atef, M., Rezaei, M. & Behrooz, R. (2014). Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose. International Journal of Biological Macromolecules, 70, 537-544.
Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3), 237-248. Chahardehi Sirati, Z., Movahedi , F. & Aminifar, M. (2018). Improvement of the Mechanical and Barrier Properties of Potato Starch-based Films using ZnO Nanoparticles & its Application in Iranian Sour Cherry Packaging. Food Science and Technology, 14(11), 215-229 [In Persian]. Chang, P. R., Jian, R., Yu, J. & Ma, X. (2010). Fabrication and characterisation of chitosan nanoparticles/ plasticised-starch composites. Food Chemistry, 120(3), 736–740. Chen, G., Dufresne, A., Huang, J. & Chang, P. R. (2009). A Novel Thermoformable Bionanocomposite Based on Cellulose Nanocrystal-graft-Poly(ε-caprolactone). Macromolecular Materials and Engineering, 294, 59–67.
Cui, W. & Mazza, G. (1996). Physicochemical characteristics of flaxseed gum. Food Research International, 29, 397–402.
Dadashi, S., Mousavi, M., Emam D-Jomeh, Z. & Oromiehie, A. (2012). Films based on Poly (lactic acid) biopolymer: effect of clay and cellulosic nanoparticles on their physical, mechanical and structural properties. Iranian Journal of Polymer Science and Technology, 25(2), 127-136.
de Azeredo, H. M. (2009). Nanocomposites for food packaging applications. Food Research International, 42(9), 1240-1253.
de Mesquita, J. P., Donnici, C. L., Teixeira, I. F. & Pereira, F. V. (2012). Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydrate Polymer, 90, 210–217.
de Moura, M. R., Mattoso, L. H. C. & Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering, 109, 520-524. Ekrami, M. & Emam Jomeh, Z. (2016). Effect of stearic acid on thermal, barrier and morphological properties of salep-based edible film. Food Science and Technology, 13 (9), 161-171 [In Persian]. George, J. & Siddaramaiah, H. (2012). High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydrate Polymer, 87(3), 2031-2037. Ghanbarzadeh, B. & Noushirvani, N. (2013).Comparing the microstructure, topography and surface hydrophilicity of starch polyvinyl alcohol based films containing nanoclay and cellulose nanocrystal. Iranian Journal of Biosystems Engineering, 44(1), 87-100 [In Persian].
Guilbert, S., Gontard, N. & Cuq, B. (1995). Technology and applications of edible protective films. Packaging Technology and Science, 8(6), 339-346.
Hosseini, S. M. H., Razavi, S. H. & Mousavi, S. M. A. (2011). Studies on physical, mechanical, antibacterial and microstructural properties of chitosan edible films containing thyme and cinnamon essential oils. Electronic Journal of Food Processing and Preservation, 1(2), 47-68 [In Persian].
Huq, T., Salmieri, S., Khan, A., Khan, R. A., Le Tien, C., Riedl, B., Fraschini, C., Bouchard, J., Uribe-Calderon, J., Kamal, M. R. & Lacroix, M. (2012). Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymer, 90(4), 1757-1763.
Jouki, M., Yazdi, F. T., Mortazavi, S. A. & Koocheki, A. (2013). Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules, 62, 500-507.
Jouki, M., Mortazavi, S.A., Tabatabaei Yazdi, F., Koocheki, A. & Khazaei, N. (2014). Use of quince seed mucilage edible films
containing natural preservatives toenhance physico-chemical quality of rainbow trout fillets during cold storage. Food Science and Human Wellness, 3, 65–72.
Jouki, M., Yazdi, F. T., Mortazavi, S. A. & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19.
Jung, H. & Gennadios, A. (2006). Innovations in Food Packaging, CRC press, NewYork, pp 57– 81.
Khan, A., Khan, R. A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M. R. & Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymer, 90(4), 1601-1608. Khan, R.A., Salmieri, S., Dussault, D., Urib-Calderon, J., Kamal, M. R., Safrany, A. & Lacroix, M. (2010). Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. Journal of Agricultural and Food Chemistry, 58, 7878–7885.
Kord, B., Malekian, B., Yousefi, H. & Najafi, A. (2016). Preparation and characterization of nanofibrillated cellulose/poly (vinyl alcohol) composite films. Maderas: Ciencia y Tecnología, 18(4), 743 – 752. Kord, B. & Roohani, M. (2015). Morphological, mechanical and barrier properties of polylactic acid/cellulose nanocrystal/nanoclay composite films. Wood & Forest Science and Technology, 21(4), 41-60 [In Persian].
Kumar, A., Negi, Y. S., Bhardwaj, N. K. & Choudhary, V. (2013). Synthesis and characterization of cellulose nanocrystals/PVA based bionanocomposite. Advanced Materials Letters, 4(8), 626-631. Lee, S. Y., Mohan, D. J., Kang, I. A., Doh, G. H., Lee, S. & Han, S. O. (2009). Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fiber Polymer, 10(1), 77-82.
Lin, N., Huang, J., Chang, P.R., Feng, J. & Yu, J. (2011). Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydrate Polymer, 83, 1834–1842.
Lin, S., Huang, J., Chang, P. R., Wei, S., Xu, Y. & Zhang, Q. (2013). Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydrate Polymer, 95, 91–99.
Ma, X., Chang, P. R., Yang, J. & Yu, J. (2009). Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohydrate Polymer, 75(3), 472-478.
Moghbel, A. & Tayebi, M. (2015). Quince Seeds Biopolymer: Extraction, Drying Methods and Evaluation. Jundishapur Journal of Natural Pharmaceutical Products, 10(3), e25392. Noshirvani, N., Ghanbarzadeh, B. & Entezami, A. A. (2012). The microstructure and physical properties (permeability, mechanical and thermal properties) of starch/polyvinyl alcohol/nanoclay based nanocomposite films. Iranian Food Science and Technology Research Journal, 8(1), 49-59 [In Persian].
Qu, P., Gao, Y., Wu, G. & Zhang, L. (2010). Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils. BioResources, 5(3), 1811-1823.
Rhim, J. W., Hong, S. I. & Ha, C. S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Science Technology, 42(2), 612-617.
Salarbashi, D., Mortazavi, S. A., Shahidi Noghabi, M., Fazly Bazzaz, B. S.,
Sedaghat, N., Ramezani, M. & Shahabi-Ghahfarrokhi, I. (2015). Investigation the physico-mechanical, structural and thermal properties of films based on soy flour polysaccharide contain cloisite Na+. Food Science and Technology, 56(13), 69-79 [In Persian].
Shekarabi, A. S., Oromiehie, A. R., Vaziri, A., Ardjmand, M. & Safekordi, A. K. (2014). Investigation of the effect of nanoclay on the properties of quince seed mucilage edible films. Food Science & Nutrition, 2(6), 821–827.
Sothornvit, R. & Krochta, J. M. (2001).
Plasticizer effect on mechanical properties of β-lactoglobulin films. Journal of Food Engineering, 50(3), 149-155.
Xu, Y., Ren, X. & Hanna, M. A. (2006).
Chitosan/clay nanocomposite film preparation and characterization. Journal of Applied Polymer Science, 99(4), 1684-1691.
Zanganeh, Z., Sadeghi Mahoonak, A.R., Ghorbani, M., Kashaninjad, M. & Aghajani N. (2017). Production and evaluation of composite films properties based on quince seed mucilage and whey protein isolate. Iranian Journal of Food Science and Technology, 14(67), 203-211 [In Persian].
Abdollahi, M., Alboofetileh, M., Rezaei, M. & Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids, 32, 416–424.
Alboofetileh, M., Rezaei, M., Hosseini, H. & Abdollahi, M. (2017). Improving physical and mechanical properties of sodium
alginate films with clay nanoparticles. Food Science and Technology, 14(5), 313-321[In Persian].
Andrade-Pizarro, R. D., Skurtys, O. & Osorio-Lira, F. (2015). Effect of cellulose nanofibers concentration on mechanical, optical, and barrier properties of gelatin-based edible films. Dyna, 82(191), 219-226.
Angles, M. N. & Dufresne, A. (2000). Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis. Macromolecules, 33, 8344–8353.
AOAC. (1990). Official methods of analyses: 14th Ed., Association of official analytical chemists: Washington. DC. USA.
Atef, M., Rezaei, M. & Behrooz, R. (2014). Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose. International Journal of Biological Macromolecules, 70, 537-544.
Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3), 237-248. Chahardehi Sirati, Z., Movahedi , F. & Aminifar, M. (2018). Improvement of the Mechanical and Barrier Properties of Potato Starch-based Films using ZnO Nanoparticles & its Application in Iranian Sour Cherry Packaging. Food Science and Technology, 14(11), 215-229 [In Persian]. Chang, P. R., Jian, R., Yu, J. & Ma, X. (2010). Fabrication and characterisation of chitosan nanoparticles/ plasticised-starch composites. Food Chemistry, 120(3), 736–740. Chen, G., Dufresne, A., Huang, J. & Chang, P. R. (2009). A Novel Thermoformable Bionanocomposite Based on Cellulose Nanocrystal-graft-Poly(ε-caprolactone). Macromolecular Materials and Engineering, 294, 59–67.
Cui, W. & Mazza, G. (1996). Physicochemical characteristics of flaxseed gum. Food Research International, 29, 397–402.
Dadashi, S., Mousavi, M., Emam D-Jomeh, Z. & Oromiehie, A. (2012). Films based on Poly (lactic acid) biopolymer: effect of clay and cellulosic nanoparticles on their physical, mechanical and structural properties. Iranian Journal of Polymer Science and Technology, 25(2), 127-136.
de Azeredo, H. M. (2009). Nanocomposites for food packaging applications. Food Research International, 42(9), 1240-1253.
de Mesquita, J. P., Donnici, C. L., Teixeira, I. F. & Pereira, F. V. (2012). Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydrate Polymer, 90, 210–217.
de Moura, M. R., Mattoso, L. H. C. & Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering, 109, 520-524. Ekrami, M. & Emam Jomeh, Z. (2016). Effect of stearic acid on thermal, barrier and morphological properties of salep-based edible film. Food Science and Technology, 13 (9), 161-171 [In Persian]. George, J. & Siddaramaiah, H. (2012). High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydrate Polymer, 87(3), 2031-2037. Ghanbarzadeh, B. & Noushirvani, N. (2013).Comparing the microstructure, topography and surface hydrophilicity of starch polyvinyl alcohol based films containing nanoclay and cellulose nanocrystal. Iranian Journal of Biosystems Engineering, 44(1), 87-100 [In Persian].
Guilbert, S., Gontard, N. & Cuq, B. (1995). Technology and applications of edible protective films. Packaging Technology and Science, 8(6), 339-346.
Hosseini, S. M. H., Razavi, S. H. & Mousavi, S. M. A. (2011). Studies on physical, mechanical, antibacterial and microstructural properties of chitosan edible films containing thyme and cinnamon essential oils. Electronic Journal of Food Processing and Preservation, 1(2), 47-68 [In Persian].
Huq, T., Salmieri, S., Khan, A., Khan, R. A., Le Tien, C., Riedl, B., Fraschini, C., Bouchard, J., Uribe-Calderon, J., Kamal, M. R. & Lacroix, M. (2012). Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymer, 90(4), 1757-1763.
Jouki, M., Yazdi, F. T., Mortazavi, S. A. & Koocheki, A. (2013). Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules, 62, 500-507.
Jouki, M., Mortazavi, S.A., Tabatabaei Yazdi, F., Koocheki, A. & Khazaei, N. (2014). Use of quince seed mucilage edible films
containing natural preservatives toenhance physico-chemical quality of rainbow trout fillets during cold storage. Food Science and Human Wellness, 3, 65–72.
Jouki, M., Yazdi, F. T., Mortazavi, S. A. & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19.
Jung, H. & Gennadios, A. (2006). Innovations in Food Packaging, CRC press, NewYork, pp 57– 81.
Khan, A., Khan, R. A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M. R. & Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymer, 90(4), 1601-1608. Khan, R.A., Salmieri, S., Dussault, D., Urib-Calderon, J., Kamal, M. R., Safrany, A. & Lacroix, M. (2010). Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. Journal of Agricultural and Food Chemistry, 58, 7878–7885.
Kord, B., Malekian, B., Yousefi, H. & Najafi, A. (2016). Preparation and characterization of nanofibrillated cellulose/poly (vinyl alcohol) composite films. Maderas: Ciencia y Tecnología, 18(4), 743 – 752. Kord, B. & Roohani, M. (2015). Morphological, mechanical and barrier properties of polylactic acid/cellulose nanocrystal/nanoclay composite films. Wood & Forest Science and Technology, 21(4), 41-60 [In Persian].
Kumar, A., Negi, Y. S., Bhardwaj, N. K. & Choudhary, V. (2013). Synthesis and characterization of cellulose nanocrystals/PVA based bionanocomposite. Advanced Materials Letters, 4(8), 626-631. Lee, S. Y., Mohan, D. J., Kang, I. A., Doh, G. H., Lee, S. & Han, S. O. (2009). Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fiber Polymer, 10(1), 77-82.
Lin, N., Huang, J., Chang, P.R., Feng, J. & Yu, J. (2011). Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydrate Polymer, 83, 1834–1842.
Lin, S., Huang, J., Chang, P. R., Wei, S., Xu, Y. & Zhang, Q. (2013). Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydrate Polymer, 95, 91–99.
Ma, X., Chang, P. R., Yang, J. & Yu, J. (2009). Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohydrate Polymer, 75(3), 472-478.
Moghbel, A. & Tayebi, M. (2015). Quince Seeds Biopolymer: Extraction, Drying Methods and Evaluation. Jundishapur Journal of Natural Pharmaceutical Products, 10(3), e25392. Noshirvani, N., Ghanbarzadeh, B. & Entezami, A. A. (2012). The microstructure and physical properties (permeability, mechanical and thermal properties) of starch/polyvinyl alcohol/nanoclay based nanocomposite films. Iranian Food Science and Technology Research Journal, 8(1), 49-59 [In Persian].
Qu, P., Gao, Y., Wu, G. & Zhang, L. (2010). Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils. BioResources, 5(3), 1811-1823.
Rhim, J. W., Hong, S. I. & Ha, C. S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Science Technology, 42(2), 612-617.
Salarbashi, D., Mortazavi, S. A., Shahidi Noghabi, M., Fazly Bazzaz, B. S.,
Sedaghat, N., Ramezani, M. & Shahabi-Ghahfarrokhi, I. (2015). Investigation the physico-mechanical, structural and thermal properties of films based on soy flour polysaccharide contain cloisite Na+. Food Science and Technology, 56(13), 69-79 [In Persian].
Shekarabi, A. S., Oromiehie, A. R., Vaziri, A., Ardjmand, M. & Safekordi, A. K. (2014). Investigation of the effect of nanoclay on the properties of quince seed mucilage edible films. Food Science & Nutrition, 2(6), 821–827.
Sothornvit, R. & Krochta, J. M. (2001).
Plasticizer effect on mechanical properties of β-lactoglobulin films. Journal of Food Engineering, 50(3), 149-155.
Xu, Y., Ren, X. & Hanna, M. A. (2006).
Chitosan/clay nanocomposite film preparation and characterization. Journal of Applied Polymer Science, 99(4), 1684-1691.
Zanganeh, Z., Sadeghi Mahoonak, A.R., Ghorbani, M., Kashaninjad, M. & Aghajani N. (2017). Production and evaluation of composite films properties based on quince seed mucilage and whey protein isolate. Iranian Journal of Food Science and Technology, 14(67), 203-211 [In Persian].