مقایسه مقاومت آنتیبیوتیکی لاکتوباسیلوسهای جداسازی شده از فرآورده های لبنی سنتی با لاکتوباسیلوسهای جداسازی شده از نمونههای فرآورده های لبنی صنعتی
محورهای موضوعی :
میکروبیولوژی مواد غذایی
بهاره مقیمی
1
,
مریم قبادی دانا
2
*
,
رضا شاپوری
3
1 - دانشجوی دکتری میکروبیولوژی، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
2 - عضو هیئت علمی پژوهشگاه استاندارد، کرج، ایران
3 - استادیار واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
تاریخ دریافت : 1400/07/05
تاریخ پذیرش : 1400/07/05
تاریخ انتشار : 1400/07/01
کلید واژه:
آغازگر,
فرآورده های لبنی,
لاکتوباسیلوس,
مقاومت به آنتی بیوتیک,
چکیده مقاله :
مقدمه: لاکتوباسیلوس ها یکی از اعضا خانواده باکتری های اسیدلاکتیک (LAB)و از متداولترین انواع باکتری هایی هستند که بهعنوان کشت آغازگر و پروبیوتیک در تولید انواع فرآورده های لبنی صنعتی و سنتی مورد استفاده قرار میگیرند. با توجه به اینکه لاکتوباسیلوس ها بهصورت بالقوه می توانند در انتقال مقاومت به آنتی بیوتیک به باکتری های ساکن دستگاه گوارش یا باکتری های بیماری زا نقش داشته باشند.مواد و روش ها: در این پژوهش پس از جداسازی لاکتوباسیلوس ها از نمونه های ماست سنتی و صنعتی، دوغ سنتی و دوغ پاستوریزه صنعتی، مقاومت به آنتی بیوتیک های پنی سیلین، آمپی سیلین، تتراسایکلین، اریترومایسین، جنتامایسین، استرپتومایسین، ونکومایسین، نالیدیکسیک اسید، سیپروفلوکساسین، تری متوپریم سولفامتوکسازول و کانامایسین، ریفامپین و کلرامفنیکل در ایزوله ها با استفاده از روش دیسک دیفیوژن مورد بررسی و مقایسه قرارگرفته است.یافته ها: یافته های این پژوهش نشان می دهد که در میان 24 لاکتوباسیلوس جداسازی شده فرآورده های لبنی سنتی، مقاومت به ونکومایسین (8/45%) و در لاکتوباسیلوس های جداسازی شده از 17 نمونه ماست صنعتی مقاومت به ونکومایسین (59%) و بیشترین میزان را دارا بود. در نمونه های جداسازی شده از دوغ سنتی مقاومت به ونکومایسین 40% و دوغ صنعتی (50%) در بین ایزوله ها بیشترین فراوانی را داشت. مقایسه قطر هاله های اندازه گیری شده در لاکتوباسیلوس های جداسازی شده از ماست سنتی بهجز در مورد آنتی بیوتیک های پنی سیلین و ریفامپین تفاوت معنی داری نشان نمیدهد، همچنین در ایزوله های دوغ سنتی قطر هاله های اندازه گیری شده بهجز در آنتیبیوتیک سیپروفلوکساسین تفاوت معنی داری ندارند.نتیجه گیری: با توجه به نتایج بهدستآمدهکه مقاومت به آنتیبیوتیک هم در لاکتوباسیلوس های جداسازی شده فرآورده های لبنی سنتی و صنعتی مشاهده گردید به نظر می رسد که نیاز به توجه و بررسی میزان مقاومت به آنتیبیوتیک در کشتهای آغازگر مورد استفاده در تولید فراورده های غذایی و ایجاد استاندارد مدون در این زمینه وجود دارد تا به این ترتیب از انتشار مقاومت به آنتیبیوتیک و تبعات زیانبار ناشی از آن جلوگیری شود.
چکیده انگلیسی:
Introduction: Lactobacilli are a member of the Lactic Acid Bacteria (LAB) family that are used as starter culture in the production of industrial and traditional dairy products. Lactobacilli could potentially play an important role in the transition of antibiotic resistance to gastrointestinal bacteria or pathogenic bacteria.Materials and Methods: In this study, Lactobacilli were isolated from traditional yogurts, yogurt drinks and industrial yogurts and yogurt drinks and the antibiotic resistance to 13 antibiotic including: Penicillin, Ampicillin, Tetracycline, Erythromycin, Gentamicin, Streptomycin, Vancomycin, Nalidixic acid, Trimethoprim Sulfamethoxazole, Kanamycin, Rifampin, Ciprofloxacin, and Chloramphenicol have been investigated and the results were compared.Results: According to the results, vancomycin resistance was the most prevalent phenotype in traditional yogurt (45.8%) and yogurt drink (40%) and in industrial yogurt (59%) and yogurt drink (50%) respectively. Except in the case of Penicillin and rifampin there was no significant difference between the resistances of Lactobacilli isolated from industrial yogurt to other studied antibiotics in this study are compared to the resistance of Lactobacillus isolated from traditional yogurt. Ciprofloxacin resistance in Lactobacilli isolated from industrial yogurt drink is significantly higher than the resistance of Lactobacilli isolated from traditional yogurt drink and there was no significant difference between the resistances to the other studied antibiotics inLactobacillus isolated from industrial and traditional yogurt drink.Conclusion:Antibiotic resistance was observed in Lactobacilli isolates of traditional and industrial samples. It seems that there is a need to pay attention to the antibiotic resistance in starter cultures used in the food industries in order to prevent the spread of antibiotic resistance.
منابع و مأخذ:
Abriouel, H., Casado Muñoz, M., Lavilla Lerma, L., Pérez Montoro, B., Bockelmann, W., Pichner, R., Kabisch, J., Cho, G. S., Franz, C., Gálvez, A. & Benomar, N. (2015). New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food research international (Ottawa, Ont.), 78, 465–481. https://doi.org/10.1016/j.foodres.2015.09.016
Akpinar, A., Yerlikaya, O. & Kiliç, S. (2011). Antimicrobial activity and antibiotic resistance of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus strains isolated from Turkish homemade yoghurts. African Journal of Microbiology Research, 5(6), 675-682.
Ammor, M. S., Flórez, A. B. & Mayo, B. (2007). Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food microbiology,24(6), 559–570. https://doi.org/10.1016/j.fm.2006.11.001
Angelis, M. De. & Gobbetti, M. (2016). Lactobacillus SPP: General Characteristics, in Reference Module in Food Science.
Anisimova, E. & Yarullina, D. (2018). Characterization of Erythromycin and Tetracycline Resistance in Lactobacillus fermentumInternational journal of microbiology, 2018, 3912326. https://doi.org/10.1155/2018/3912326
(2018). M100 Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute.
Bergey, D. H., John G. & Holt, J. G. (2000). Bergey's Manual of Determinative Bacteriology. Philadelphia: Lippincott Williams & Wilkins.
Campedelli, I., Mathur, H., Salvetti, E., Clarke, S., Rea, M. C., Torriani, S., Ross, R. P., Hill, C. & O'Toole, P. W. (2018). Genus-Wide Assessment of Antibiotic Resistance in LactobacillusApplied and environmental microbiology, 85(1), e01738-18. https://doi.org/10.1128/AEM.01738-18
Chaves‐López, C., Serio Carlos., A, Grande‐Tovar Raul, D. & Cuervo‐Mulet, J. (2014).Traditional Fermented Foods and Beverages from a Microbiological and Nutritional Perspective: The Colombian Heritage, Comprehensive reviews in food science and food safety, 13(5), 1031-1048.
Clementi, F. & Aquilanti, L. (2011). Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria. Anaerobe, 17(6), 394–398. https://doi.org/10.1016/j.anaerobe.2011.03.021
Cormican, M. (2015) Potential for Transmission of Antimicrobial Resistance in the Food Chain, Ireland, Dublin: Food Safety Authority of Ireland publication.
Devirgiliis, C., Zinno, P. & Perozzi, G. (2013). Update on antibiotic resistance in foodborne Lactobacillus and LactococcusFrontiers in microbiology, 4, 301. https://doi.org/10.3389/fmicb.2013.00301
Dubernet, S., Desmasures, N. & Guéguen, M. (2002). A PCR-based method for identification of lactobacilli at the genus level. FEMS Microbiology letters, 214(2), 271–275. https://doi.org/10.1111/j.1574-6968.2002.tb11358.x
Durso, L. & Hutkins, R. (2003) Starter culture, in Encyclopedia of Food Sciences and Nutrition (Second Edition).
Erginkaya, Z., Turhan, E. U. & Tatlı, D. (2018). Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products. Iranian journal of veterinary research, 19(1), 53–56.
Fraqueza, M. J. (2015). Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. International Journal of Food Microbiology, 212, 76–88. https://doi.org/10.1016/j.ijfoodmicro.2015.04.035
Guo, H., Pan, L., Li, L., Lu, J., Kwok, L., Menghe, B., Zhang, H. & Zhang, W. (2017). Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. Journal of Food Science, 82(3), 724–730. https://doi.org/10.1111/1750-3841.13645
Herreros, M. A., Sandoval, H., González, L., Castro J. M., Fresno J. M. & Tornadijo, M. (2005). Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from Armada cheese (a Spanish goats' milk cheese). Food Microbiology, 22(5), 455-459. https://doi.org/10.1016/j.fm.2004.11.007
(2011). Evaluation of antibiotic susceptibility by disc diffusion method- Test method. Standard 13560 [In Persian].
Kavitha, P. D. & Banumathi, M. (2016). Isolation and Biochemical Characterization of Lactobacillus species isolated from Dahi, International Journal of Current Microbiology and applied Science, 5(4), 1042-1049.
Kumar, A. & Kumar, D. (2015). Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe, 33, 117–123. https://doi.org/10.1016/j.anaerobe.2015.03.004
Ledina, T., Mohar-Lorbeg, P., Golob, M., Djordjevic, J., Bogovič-Matijašić, B. & Bulajic, S. (2018). Tetracycline resistance in Lactobacilli isolated from Serbian traditional raw milk cheeses. Journal of Food Science and Technology, 55(4), 1426–1434. https://doi.org/10.1007/s13197-018-3057-6
Lethycia, W. H., Aparecida, M. A., DallaSanta, O. R., Bittencourt Fernando, L., Madeira, H. M. F. & Freitas de Macedo, F. R. (2017). Methods for the evaluation of antibiotic resistance in Lactobacillus isolated from fermented sausages. Ciência Rural, Santa Maria, 47(8), 78-96.https://doi.org/10.1590/0103-8478cr20160966.
Mani-López, E., Palou, E. & López-Malo, A. (2014). Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. Journal of Dairy Science,97(5), 2578–2590. https://doi.org/10.3168/jds.2013-7551
Mansourfar, K. (2005). Statistical methods, Tehran university press.p.201 [In Persian].
Mermelstein, N. H. (2018). Combating antibiotic resistance. Food Technology. 72(3), 62-65.
Momeni, M. & Faal Qayyumi, A. (2003). Statistical analysis using SPSS. New book publishing, Tehran [In Persian].
Nawaz, M., Wang, J., Zhou, A., Ma, C., Wu, X., Moore, J. E., Millar, B. C. & Xu, J. (2011). Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Current Microbiology, 62(3), 1081–1089. https://doi.org/10.1007/s00284-010-9856-2
Patel, A., Shah, N. & Prajapati, J. (2012). Antibiotic Resistance Profile of Lactic Acid Bacteria and Their Implications in Food Chain. World Journal of Dairy and Food Sciences .7. 202-211. 10.5829/idosi.wjdfs.2012.7.2.1113.
Rahman, M. M., Hossain Moazzem, K. & Mahbubur Rahman, S. M. (2016). Isolation, characterization, and properties study of probiotic lactic acid bacteria of selected yoghurt from Bangladesh. African Journal of Microbiology Research, 10(1), 23-31.
Rozman, V., Mohar Lorbeg, P., Accetto, T. & Bogovič Matijašić, B. (2020). Characterization of antimicrobial resistance in Lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. International Journal of Food Microbiology,314, 108388. https://doi.org/10.1016/j.ijfoodmicro.2019.108388
Sharma, N., Nuth, A. K., Neopaney, B. & Gupta, A. (2018). Biotechnology and Traditional Fermented Foods, Boca Raton, UK: CRC Press.
Verraes, C., Van Boxstael, S., Van Meervenne, E., Van Coillie, E., Butaye, P., Catry, B., De Schaetzen, M., Van Huffel, X., Imberechts, H., Dierick, K., Daube, G., Saegerman, C., De Block, J. & Dewulf, J. (2013). Antimicrobial Resistance in the Food Chain: A Review, International Journal of Environmental Research and Public Health, 10(7), 2643—2669. Doi:10.3390/ijerph10072643.
Wang, K., Zhang, H., Jinsong, F., Luyao, M., Fuente-Núñeze, F. & Xiaonan Lua, Sh. W. (2019). Antibiotic resistance of lactic acid bacteria isolated from dairy products in Tianjin, China. Journal of Agriculture and Food Research, 1, 24-37.
Zhou, N., Zhang, J. X., Fan, M. T., Wang, J., Guo, G. & Wei, X. Y. (2012). Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts. Journal of Dairy Science, 95(9), 4775–4783. https://doi.org/10.3168/jds.2011-5271
_||_
Abriouel, H., Casado Muñoz, M., Lavilla Lerma, L., Pérez Montoro, B., Bockelmann, W., Pichner, R., Kabisch, J., Cho, G. S., Franz, C., Gálvez, A. & Benomar, N. (2015). New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food research international (Ottawa, Ont.), 78, 465–481. https://doi.org/10.1016/j.foodres.2015.09.016
Akpinar, A., Yerlikaya, O. & Kiliç, S. (2011). Antimicrobial activity and antibiotic resistance of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus strains isolated from Turkish homemade yoghurts. African Journal of Microbiology Research, 5(6), 675-682.
Ammor, M. S., Flórez, A. B. & Mayo, B. (2007). Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food microbiology,24(6), 559–570. https://doi.org/10.1016/j.fm.2006.11.001
Angelis, M. De. & Gobbetti, M. (2016). Lactobacillus SPP: General Characteristics, in Reference Module in Food Science.
Anisimova, E. & Yarullina, D. (2018). Characterization of Erythromycin and Tetracycline Resistance in Lactobacillus fermentumInternational journal of microbiology, 2018, 3912326. https://doi.org/10.1155/2018/3912326
(2018). M100 Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute.
Bergey, D. H., John G. & Holt, J. G. (2000). Bergey's Manual of Determinative Bacteriology. Philadelphia: Lippincott Williams & Wilkins.
Campedelli, I., Mathur, H., Salvetti, E., Clarke, S., Rea, M. C., Torriani, S., Ross, R. P., Hill, C. & O'Toole, P. W. (2018). Genus-Wide Assessment of Antibiotic Resistance in LactobacillusApplied and environmental microbiology, 85(1), e01738-18. https://doi.org/10.1128/AEM.01738-18
Chaves‐López, C., Serio Carlos., A, Grande‐Tovar Raul, D. & Cuervo‐Mulet, J. (2014).Traditional Fermented Foods and Beverages from a Microbiological and Nutritional Perspective: The Colombian Heritage, Comprehensive reviews in food science and food safety, 13(5), 1031-1048.
Clementi, F. & Aquilanti, L. (2011). Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria. Anaerobe, 17(6), 394–398. https://doi.org/10.1016/j.anaerobe.2011.03.021
Cormican, M. (2015) Potential for Transmission of Antimicrobial Resistance in the Food Chain, Ireland, Dublin: Food Safety Authority of Ireland publication.
Devirgiliis, C., Zinno, P. & Perozzi, G. (2013). Update on antibiotic resistance in foodborne Lactobacillus and LactococcusFrontiers in microbiology, 4, 301. https://doi.org/10.3389/fmicb.2013.00301
Dubernet, S., Desmasures, N. & Guéguen, M. (2002). A PCR-based method for identification of lactobacilli at the genus level. FEMS Microbiology letters, 214(2), 271–275. https://doi.org/10.1111/j.1574-6968.2002.tb11358.x
Durso, L. & Hutkins, R. (2003) Starter culture, in Encyclopedia of Food Sciences and Nutrition (Second Edition).
Erginkaya, Z., Turhan, E. U. & Tatlı, D. (2018). Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products. Iranian journal of veterinary research, 19(1), 53–56.
Fraqueza, M. J. (2015). Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. International Journal of Food Microbiology, 212, 76–88. https://doi.org/10.1016/j.ijfoodmicro.2015.04.035
Guo, H., Pan, L., Li, L., Lu, J., Kwok, L., Menghe, B., Zhang, H. & Zhang, W. (2017). Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. Journal of Food Science, 82(3), 724–730. https://doi.org/10.1111/1750-3841.13645
Herreros, M. A., Sandoval, H., González, L., Castro J. M., Fresno J. M. & Tornadijo, M. (2005). Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from Armada cheese (a Spanish goats' milk cheese). Food Microbiology, 22(5), 455-459. https://doi.org/10.1016/j.fm.2004.11.007
(2011). Evaluation of antibiotic susceptibility by disc diffusion method- Test method. Standard 13560 [In Persian].
Kavitha, P. D. & Banumathi, M. (2016). Isolation and Biochemical Characterization of Lactobacillus species isolated from Dahi, International Journal of Current Microbiology and applied Science, 5(4), 1042-1049.
Kumar, A. & Kumar, D. (2015). Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe, 33, 117–123. https://doi.org/10.1016/j.anaerobe.2015.03.004
Ledina, T., Mohar-Lorbeg, P., Golob, M., Djordjevic, J., Bogovič-Matijašić, B. & Bulajic, S. (2018). Tetracycline resistance in Lactobacilli isolated from Serbian traditional raw milk cheeses. Journal of Food Science and Technology, 55(4), 1426–1434. https://doi.org/10.1007/s13197-018-3057-6
Lethycia, W. H., Aparecida, M. A., DallaSanta, O. R., Bittencourt Fernando, L., Madeira, H. M. F. & Freitas de Macedo, F. R. (2017). Methods for the evaluation of antibiotic resistance in Lactobacillus isolated from fermented sausages. Ciência Rural, Santa Maria, 47(8), 78-96.https://doi.org/10.1590/0103-8478cr20160966.
Mani-López, E., Palou, E. & López-Malo, A. (2014). Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. Journal of Dairy Science,97(5), 2578–2590. https://doi.org/10.3168/jds.2013-7551
Mansourfar, K. (2005). Statistical methods, Tehran university press.p.201 [In Persian].
Mermelstein, N. H. (2018). Combating antibiotic resistance. Food Technology. 72(3), 62-65.
Momeni, M. & Faal Qayyumi, A. (2003). Statistical analysis using SPSS. New book publishing, Tehran [In Persian].
Nawaz, M., Wang, J., Zhou, A., Ma, C., Wu, X., Moore, J. E., Millar, B. C. & Xu, J. (2011). Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Current Microbiology, 62(3), 1081–1089. https://doi.org/10.1007/s00284-010-9856-2
Patel, A., Shah, N. & Prajapati, J. (2012). Antibiotic Resistance Profile of Lactic Acid Bacteria and Their Implications in Food Chain. World Journal of Dairy and Food Sciences .7. 202-211. 10.5829/idosi.wjdfs.2012.7.2.1113.
Rahman, M. M., Hossain Moazzem, K. & Mahbubur Rahman, S. M. (2016). Isolation, characterization, and properties study of probiotic lactic acid bacteria of selected yoghurt from Bangladesh. African Journal of Microbiology Research, 10(1), 23-31.
Rozman, V., Mohar Lorbeg, P., Accetto, T. & Bogovič Matijašić, B. (2020). Characterization of antimicrobial resistance in Lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. International Journal of Food Microbiology,314, 108388. https://doi.org/10.1016/j.ijfoodmicro.2019.108388
Sharma, N., Nuth, A. K., Neopaney, B. & Gupta, A. (2018). Biotechnology and Traditional Fermented Foods, Boca Raton, UK: CRC Press.
Verraes, C., Van Boxstael, S., Van Meervenne, E., Van Coillie, E., Butaye, P., Catry, B., De Schaetzen, M., Van Huffel, X., Imberechts, H., Dierick, K., Daube, G., Saegerman, C., De Block, J. & Dewulf, J. (2013). Antimicrobial Resistance in the Food Chain: A Review, International Journal of Environmental Research and Public Health, 10(7), 2643—2669. Doi:10.3390/ijerph10072643.
Wang, K., Zhang, H., Jinsong, F., Luyao, M., Fuente-Núñeze, F. & Xiaonan Lua, Sh. W. (2019). Antibiotic resistance of lactic acid bacteria isolated from dairy products in Tianjin, China. Journal of Agriculture and Food Research, 1, 24-37.
Zhou, N., Zhang, J. X., Fan, M. T., Wang, J., Guo, G. & Wei, X. Y. (2012). Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts. Journal of Dairy Science, 95(9), 4775–4783. https://doi.org/10.3168/jds.2011-5271