تأثیر پروبیوتیک ها بر کاهش میزان پاتولین موجود در آب سیب سین بیوتیک
محورهای موضوعی : میکروبیولوژی مواد غذاییآلاله ذوقی 1 , کیانوش خسروی دارانی 2 * , سارا سهراب وندی 3 , حسین عطار 4 , سید ابوالحسن علوی 5
1 - دانش آموخته دکتری گروه مهندسی شیمی، دانشکدة فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استاد گروه تحقیقات صنایع غذایی، انستیتو تحقیقات تغذیه ای و صنایع غذایی کشور، دانشکده علوم تغذیه و صنایع غذایی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران
3 - دانشیار گروه تحقیقات صنایع غذایی، انستیتو تحقیقات تغذیه ای و صنایع غذایی کشور، دانشکده علوم تغذیه و صنایع غذایی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران
4 - گروه مهندسی شیمی، دانشکدة فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
5 - گروه مهندسی شیمی، دانشکدة فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: آب سیب, پاتولین, پروبیوتیک, پریبیوتیک, سم زدایی,
چکیده مقاله :
مقدمه: پاتولین عمدتاً در شرایط نامطلوب جمع آوری در باغهای سیب و یا انبارداری نامناسب تولید میشود و نسبت به حرارتپاستوریزاسیون مقاوم است. برخی از گونههای پروبیوتیک قادر به ایجاد پیوند با پاتولین و درنتیجه حذف آن از آب سیب هستند. هدف از اینتحقیق بررسی اثر افزودن پروبیوتیکهای لاکتوباسیلوس اسیدوفیلوس PTCC1643 و لاکتوباسیلوس پلانتاروم PTCC1058 به آب سیببر کاهش میزان پاتولین موجود در آن می باشد.مواد و روشها: هفت متغیر )نوع پروبیوتیک، میزان تلقیح، مقدار فروکتواولیگوساکارید، مقدار اینولین، غلظت پاتولین اولیۀ آب سیب، مقداراسید آسکوربیک و اسید سیتریک( در دو سطح تعریف شدند و از طراحی پلاکت برمن جهت تعیین متغیرهای مؤثر روی کاهش غلظت -پاتولین اولیه استفاده شد. نمونههای آب سیب تهیه شده پس از پاستوریزاسیون، تلقیح شده و به مدت 42 روز در یخچال نگهداری شدند. دراین مدت مقادیر pH ، اسیدیته، قندهای احیاکننده، پاتولین و قابلیت زیستی پروبیوتیکها در بازههای زمانی روز اول )هفتۀ صفر(، هفتۀ اول،هفتۀ دوم تا هفتۀ ششم اندازهگیری شدند.یافته ها: متغیرهای غلظت فروکتواولیگوساکارید و اسید آسکوربیک افزوده شده به آب سیب پروبیوتیک، به عنوان متغیرهایی که به صورتمعناداری بر کاهش غلظت پاتولین اولیۀ آب سیب مؤثر هستند، تعیین شدند. با افزودن ) cfu/ml ) 108 لاکتوباسیلوس پلانتاروم، 28 / 85 %کاهش پاتولین اولیه و با افزودن ) cfu/ml ) 1010 لاکتوباسیلوس پلانتاروم، 23 / 91 % کاهش پاتولین اولیه مشاهده شد.نتیجه گیری: پروبیوتیکهای لاکتوباسیلوس اسیدوفیلوس PTCC1643 و لاکتوباسیلوس پلانتاروم PTCC1058 قادر بهه جهذب پهاتولین ازآب سیب بودند ولی با تغییر شرایط محیطی، میزان جذب پاتولین آنها نیز تغییر میکرد. بیشترین میزان کاهش پاتولین در روز اول پهس ازتلقیح پروبیوتیک صورت گرفت
Introduction: Patulin is commonly produced in apples in unsuitable postharvest or storage conditions and has pasteurization temperature resistance. Some probiotic strains are capable of binding with patulin and remove it from apple juice. The aim of this study is to investigate the effect of adding Lactobacillus acidophilus PTCC1643 and Lactobacillus plantarum PTCC1058 on reduction of patulin content in apple juice. Materials and Methods: Seven variables (probiotic strain, inoculum size, fructooligosaccharide content, inulin concentration, patulin content, ascorbic acid and citric acid concentration) were defined in two levels and Plackett-Burman design was used to evaluate the impact of variables on efficiency of patulin removal. Apple juice samples were pasteurized and were then inoculated and kept in the refrigerator for 42 days. The pH value, titratable acidity, reducing sugars, patulin content and viability of probiotics were analyzed on the first day (week 0) and every week during refrigerated storage. Results: Fructooligosaccharide content and ascorbic acid concentration were determined as more effective variables on patulin removal from apple juice. Inserting 108 and 1010 cfu/ml Lactobacillus plantarum to apple juice can reduce 85.23% and 91.23% of initial patulin content, respectively. Conclusion: Both Lactobacillus acidophilus PTCC1643 and Lactobacillus plantarum PTCC1058 have the capacity of PAT removal from apple juice, but percent of removal depends on environment conditions. The highest percent of patulin removal caused during one day after inoculation of probiotic strains.
اسدی، ی.، محبوب، س.، غیور، م. و قائم مقامی، ج. (1381). اندازه گیری میزان پاتولین در آب سیبهای کارخانهای موجود در مغازههای شهرستان مرند به روش HPLC. هفتمین کنگرۀ تغذیۀ ایران. دانشگاه علوم پزشکی تبریز، دانشکدۀ بهداشت و تغذیه.
بینام. (1380). بیشینۀ رواداری مایکوتوکسینها. استاندارد ملی ایران، شماره 5925، چاپ اول.
بینام. (1381). اندازهگیری پاتولین به روش کروماتوگرافی مایع با کارایی بالا. استاندارد ملی ایران، شماره 7438، چاپ اول.
بی نام. (1383). آبمیوهها و روشهای آزمون. استاندارد ملی ایران، شماره 2685، تجدید نظر اول.
حاج حسینی بابایی، ا.، پرویز، م.، رحمانی، ک. و قحربیگی، پ. (1391). مقدار مایکوتوکسین پاتولین در آبمیوههای عرضه شده در سطح بازار استان قزوین. اولین همایش ملی بهداشت کشاورزی، دانشگاه علوم پزشکی تهران.
خسروی دارانی، ک. و کوشکی، م. ر. (1387). پروبیوتیکها در شیر و فرآوردههای آن. انتشارات مرز دانش.
ذوالفقاری، ه. س. (1388). تأثیر پروبیوتیکها بر میزان غلظت مایکوتوکسین پاتولین در آب سیب آلوده. پایان نامۀ کارشناس ارشد رشتۀ بیوشیمی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران.
شفقی اصل، س.ک. و مالوفی، ن. (1387). بررسی بازیافت پاتولین آب سیب در روش HPLC بوسیلۀ مواد مختلف. هجدهمین کنگرۀ ملی علوم و صنایع غذایی. پارک علم و فناوری خراسان، مشهد.
شیخ قاسمی، ش. و زمردی، ش. (1393). تاثیر دمای نگهداری بر زنده مانی لاکتوباسیلوس اسیدوفیلوس آزاد و کپسوله شده در آب سیب. نشریه پژوهشهای صنایع غذایی، جلد 24، شماره 1، صفحات 143-154.
فتحی آچاچلویی، ب.، آزادمرد دمیرچی، ص.، حصاری، ج. و نعمتی، م. (1388). مقدار مایکوتوکسین پاتولین در آبمیوههای تولیدی چند کارخانۀ آبمیوه سازی شمالغرب کشور. مجلۀ پژوهشهای صنایع غذایی، جلد 19، شماره 1، صفحات 12-1.
وجدانی، ر. و زالی، م. ر. (1382). پروبیوتیکها و مکانیسم اثر آنها در پیشگیری و درمان بیماریهای انسان. مجلۀ پژوهش در پزشکی، سال 27، شماره 4، صفحات 330-319.
Al- Hazmi, N. A. (2010). Determination of patulin and ochratoxin A using HPLC in apple juice samples in Saudi Arabia. Saudi Journal of Biological Science, 17, 353-359.
Cunha, S. C., Faria, M. A. & Fernandes, J. O. (2009). Determination of patulin in apple and quince products by GC-MS using C5-7 patulin as internal standard. Food Chemistry, 115, 352-259.
Dalie, D. K. D., Deschamps, A. M. & Richard, F. (2010). Lactic acid bacteria- potential for control of mould growth and mycotoxins: A review. Food Control, 21, 370-380.
Ding, W. K. & Shah, N. P. (2008). Survival of free and microencapsulated probiotic bacteria in orange and apple juices. International Food Research Journal,15, 219-232.
Drusch, S., Kopka, S. & Kaeding, J. (2007). Stability of patulin in a juice – like aqueous model system in the presence of ascorbic acid. Food Chemistry, 100, 192-197.
Forouzan, Sh. & Madadlou, A. (2014). Incidence of patulin in apple juices produced in west Azerbayjan province, Iran. Journal of Agriculture and Science of Technology, 16, 1613-1622.
Fuchs, S., Sontag, G., Stidl, R., Ehrlich, V., Kundi, M. & Knasmuller, S. (2008). Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by Lactic acid bacteria. Food and Chemical Toxicology, 46, 1398-1407.
Funes, G. J. & Resnik, S. L. (2009). Determination of patulin in solid and semisolid apple and pear products marketed in Argentina. Food Control, 20 (3), 277-280.
Khosravi Darani, K., Zoghi, A., Alavi, S. A. & Fatemi, S. S. A. (2008).
Application of Plackett Burman design for citric acid production from pretreated and untreated wheat straw. Iranian Journal of Chemistry and Chemical Engineering, 27 (1), 91-104.
Moraru, D., Blanca, I. & Segal, R. (2007). Probiotic vegetable juices. Food Technology, 4, 87-91.
Murillo, M., Amezqueta, S., Gonzalez, E. & Cerain A. L. (2009). Occurrence of patulin
and its dietary intake through apple juice consumption by the Spanish population. Food Chemistry, 113, 420-423.
Nosrati, R., Hashemiravan, M. & Talebi, M. (2014). Fermentation of vegetables juice by probiotic bacteria. International Journal of Biosciences, 4 (3), 171-180.
Nualkaekul, S., Salmeron, I. & Charalampopoulos, D. (2011). Investigation of the factors influencing the survival of Bifidobacterium longum in model acidic solutions and fruit juices. Food Chemistry, 129, 1037-1044.
Pakbin, B., Razavi, S. H., Mahmoudi, R. & Gajarbeygi, P. (2014). Producing Probiotic Peach Juice. Biotechnology Health Science, 1(3), 24-29.
Palles, T., Beresford, T., Condon, S. & Cogan, T. M. (1998). Citrate metabolism in Lactobacillus casei and Lactobacillus plantarum. Journal of Applied Microbiology, 85 (1), 147-154.
Peltonen, K., El-Nezami, H., Haskard, C., Ahokas, J. & Salminen, S. (2001). Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. Journal of Dairy Science,84, 2152-2156.
Shabala, L., McMeekin, T., Budde, B. B. & Siegumfeldt, H. (2006). Listeria innocua and Lactobacillus delbrueckii subsp bulgaricus employ different strategies to cope with acid stress. International Journal of Food Microbiology, 110, 1-7.
Shah, N. P., Ding, W. K., Fallourd, M. J. & Leyer, G. 2010. Improving the stability of probiotic bacteria in model fruit juices using vitamins and antioxidants. Journal of Food Science, 75, 278-282.
Sheehan, V. M., Ross, P. & Fitzgerald, G. F. (2007). Assessing the acid tolerance andthe technological robustness of probiotic cultures for fortification in fruit juices. Innovative Food Science and Emerging Technologies, 8, 279-284.
Shetty, P. H. & Jespersen, L. (2006). Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Science and Technology, 17, 48-55.
Topcu, A., Bulat, T., Wishah, R. & Boyaci, I. H. (2010). Detoxification of aflatoxin B1 and patulin by Entrococcus faecium strains. International Journal of Food Microbiology, 139, 202-205.
Tsen, J. H., Lin, Y. P. & King, V. A. E. (2003). Banana purees fermentation by Lactobacillus acidophilus immobilized in Ca-alginate. Journal of General Application and Microbiology, 49 (6), 357-361.
Vinderola, C. G., Costa, G. A., Regenhardt, S. & Reinheimer, J. A. (2002). Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. International Dairy Journal, 12, 579-589.
Yuan, Y., Zhuang, H., Zhang, T. & Liu, J. (2010). Patulin content in apple products marketed in northeast China. Food Control, 21, 1488-1491.
Zoghi, A., Khosravi-Darani, K. & Sohrabvandi, S. (2014). Surface Binding of Toxins and Heavy Metals by Probiotics.Mini-Reviews in Medicinal Chemistry, 14,84-98.
Zoghi, A., Khosravi-Darani, K., Sohrabvandi, S., Attar, H. & Alavi, A. (2017). Effect of probiotics on patulin removal from synbiotic apple juice. Journal of the Science of Food and Agriculture, 97 (8), 2601-2609.
_||_