مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی
محورهای موضوعی : بیوتکنولوژی و میکروبیولوژی موادغذایی
کلید واژه: آنالیز حساسیت, الگوریتم ژنتیک, پیش بینی, شبکه عصبی مصنوعی, سینتیک,
چکیده مقاله :
ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی قرار گرفت. نتایج خشک کردن اسمزی نشان داد که هر سه پارامتر ذکر شده بر کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد موثر هستند. با افزایش زمان فرآیند اسمزی از 30 دقیقه به 120 دقیقه، درصد کاهش وزن، درصد کاهش آب و مقدار جذب مواد جامد به ترتیب 78/21 ، 64/50 و 31/157 درصد افزایش می یابند. در این پژوهش همچنین مدل سازی فرآیند به روش الگوریتم ژنتیک - شبکه عصبی مصنوعی با 3 ورودی و 3 خروجی جهت پیشگویی کاهش وزن، کاهش آب و جذب مواد جامد انجام شد. نتایج مدل سازی به روش الگوریتم ژنتیک - شبکه عصبی مصنوعی نشان داد شبکه ای با تعداد 14 نرون در یک لایه پنهان و با استفاده از تابع فعال سازی تانژانت هیپربولیک می توان به خوبی درصد کاهش وزن (98/0R=)، درصد کاهش آب (97/0R=) و مقدار جذب مواد جامد (96/0R=) در طی فرآیند خشک کردن اسمزی زردآلو را پیشگویی نمود. نتایج آنالیز حساسیت توسط شبکه عصبی بهینه، دمای محلول اسمزی را به عنوان موثرترین عامل در کنترل کاهش وزن، کاهش آب و جذب مواد جامد از قطعات زردآلو نشان داد.