کشف دستکاری قیمت سهام با استفاده از تحلیل ممیزی خطی و تحلیل ممیزی درجه دوم
محورهای موضوعی : دانش مالی تحلیل اوراق بهادارمحمدحسین پوستفروش 1 , علیرضا ناصر صدرآبادی 2 * , محمود معینالدین 3
1 - دانشآموخته کارشناسی ارشد حسابداری دانشگاه آزاد اسلامی واحد یزد
2 - استادیار دانشگاه یزد
3 - استادیار و عضو هیات علمی دانشگاه آزاد اسلامی، واحد یزد
کلید واژه: دستکاری قیمت بازار, تحلیل ممیزی خطی, تحلیل ممیزی درجه دوم,
چکیده مقاله :
در این مقاله از مدل تحلیل ممیزی (DA)[i] برای تعیین احتمال دستکاری قیمت سهام در بورس اوراق بهادار تهران استفادهشده است. در این مطالعه، ابتدا با استفاده از روش غربالگری، نمونهای به حجم 345 شرکت پذیرفتهشده در بورس اوراق بهادار تهران انتخاب و اطلاعات مربوط به شاخصهای قیمت و بازده نقدی (TEDPIX)، قیمت پایانی، نوسان قیمت پایانی و حجم معاملات در بازه زمانی سالهای 1387 تا 1391 گردآوری گردید. سپس با بکارگیری آزمون وابستگی دیرش و آزمون ضرایب کشیدگی و چولگی و با استفاده از متغیر قیمت و بازده نقدی، شرکتهای منتخب به دودسته دستکاری قیمت شده و دستکاری قیمت نشده تقسیم شدند. سپس با بررسی نمودار روند تغییرات شاخص قیمت و بازده نقدی و حجم معاملات در مورد شرکتهای دستکاری قیمت شده و با استفاده از الگوی هالی[ii]، تاریخ شروع دستکاری قیمت تعیین گردید. در گام بعدی، با استفاده از تحلیل ممیزی یعنی تابع ممیزی خطی (LDF)[iii] و تابع تحلیل ممیزی درجه دوم (QDF)[iv] و با استفاده از متغیرهای قیمت پایانی، نوسان قیمت پایانی و حجم معاملات و با استفاده از اطلاعات یکسال قبل از شروع دستکاری قیمت سهام برایشرکتهایدستکاریقیمتشدهواطلاعاتچهارسالهبرایشرکتهایدستکاریقیمتنشده، مدلهایی برای پیشبینی دستکاری قیمت سهام طراحی گردید. در پایان قدرت پیشبینی مدلها با استفاده از دادههای گروه آزمایش موردبررسی قرار گرفت.با توجه به نتایج بهدستآمده، قدرت پیشبینی مدل تحلیل ممیزی خطی 56 درصد و قدرت پیشبینی مدل تحلیل ممیزی درجه دوم 73 درصد است.
In this study, Discriminant Analysis (DA) model are used to estimate manipulation of stock prices in Tehran Stock Exchange. In this study, first by using screening data method, a sample of 345 companies listed in Tehran Stock Exchange were selected and then information about the 'TEDPIX' index, closing price, volatility of closing price and trading volume in the time frame years 1387 to 1391 were collected. Afterwards the selected companies categorized into manipulated and non-manipulated groups by using duration dependence test and skewness & kurtosis test. Then with scrutiny of the trend of Tedpix's chart and volume chart of the manipulated group, Start of price manipulation is determined. In next step by using Linear Discriminant Function (LDF) and Quadratic Discriminant Function (QDF) and by using closing price, volatility of closing price and trading volume variables and also using information in range one year before starting manipulation group and in range four years for non-manipulation group, designed models for forecasting manipulation. At the end, the prediction ability of the models was examined. According to the results, the prediction ability of LDF model is 56% and the prediction ability of QDF model is 73%.
* فلاح شمس، میرفیض، تیموری شندی علی، (1384)، «طراحی الگوی پیشبینی دستکاری قیمت سهام در بورس اوراق بهادار تهران»، فصلنامه پژوهشی دانشگاه امام صادق (ع)، شماره 27، صص 146-115.
* فلاح شمس، میرفیض، کردلوئی حمیدرضا، (1391)، «آزمون مدلهای لاجیت و شبکه عصبی مصنوعی جهت پیشبینی دستکاری قیمت در بورس اوراق بهادار تهران»، مجله مهندسی مالی و مدیریت اوراق بهادار، شماره 7، صص 69-37.
* فلاح شمس، میرفیض، کردلوئی حمیدرضا،رشنو مهدی، (1390)، «بررسی دستکاری قیمتها در بورس تهران با استفاده از مدل ماشین بردار پشتیان»، مجله تحقیقات مالی، دوره 14، شماره 1، صص 84-69.
* فلاح شمس، میرفیض، زارع عظیم، (1392)، «بررسی عوامل تأثیرگذار در بروز حباب قیمت در بورس اوراق بهادار تهران»، فصلنامه بورس اوراق بهادار، شماره 21، بهار 1392، سال ششم، صص 91-73.
* فلاح شمس، میرفیض و دیگران، (1391)، «بررسی و تعیین عوامل کشف و پیشبینی تشکیل حباب تصنعی قیمتی»، فصلنامه دانش سرمایهگذاری، سال اول، شماره اول، بهار 1391، صص 124-99.
* قربانیمجید،باقریعباس،(1389)،«دستکاریبازاراوراقبهادار»،فصلنامهپژوهشحقوق،سالدوازدهم،شماره 29، تابستان 1389، صص 326-301.
* Aggarwal R, Wu G. 2006. Stock market manipulations. The Journal of Business, Vol. 79, 4: 1915–1954.
* Allen, F. Litov, L. and Mei, J. (2006) ‘Large investors, price manipulation, and limits to arbitrage: an anatomy of market corners’, Western Finance Association, Annual Meetings, 18–21 June, Portland, Oregon.
* Arefin, J. and Rahman, R.M. (2011) ‘Testing different forms of efficiency for Dhaka stock exchange’, International Journal of Financial Services Management, Vol. 5, No. 1, pp.1–20.
* Basu, D. and Dalal, S. Mehtra, H. and Parekh, K. (2009) the Scam, 3rd ed. Ken Source Information Services Pvt. Ltd.
* Black, F. (1971) ‘Towards a fully automated exchange, Part I’, Financial Analysts Journal, Vol. 27, pp.29–34.
* Box, G.E.P. (1949) ‘A general distribution theory for a class of likelihood criteria’, Biometrika, Vol. 36, pp.317–346.
* Box, G.E.P. (1950) ‘Problems in the analysis of growth and linear curves’, Biometrics, Vol. 6, pp.362–389.
* Comerton-Forde, C. and Putnins, T.J. (2009) ‘Measuring closing price manipulation’, Journal of Financial Intermediation, Vol. 20, pp.135–158.
* Gaganis, C. Sochos, P. and Zopounidis, C. (2010) Bankruptcy prediction using auditor size and auditor opinion’, International Journal of Financial Services Management, Vol. 4, No. 3, pp.220–238.
* Gnanadesikan, R. and Kettenring, J.R. (1972) ‘Robust estimates, residuals, and outlier detection with multi response data’, Biometrics, Vol. 28, pp.81–124.
Hanson R. opera, R. (2006) Information aggregation and manipulation in an
* experimental market. Journal of economic behavior and organization 60449-459.
* Holley, D. 'Market manipulation—the focus on prevention', Commonwealth Law Bulletin, 19:4, 1927-1931, DOI: 10.1080/03050718.1993.9986338
* Jarrow, R. (1992) ‘Market manipulation, bubbles, corners, and short squeezes’, Journal of Financial and Quantitative Analysis, Vol. 27, No. 3, pp.311–336.
* Kyle, A. and Viswanathan, S. (2008) ‘How to define illegal price manipulation’, American Economic Review, Vol. 98, No. 2, pp.274–279.
* McQueen, G. and Thorley, S. 'Bubbles, Stock Returns, and Duration Dependence', The Journal of Financial and Quantitative Analysis, Vol. 29, No. 3 (Sep. 1994), pp.379-401.
* Merrick, John J. Narayan Y. Naik, and Pradeep K. Yadav. 2005. Strategic trading behavior and price distortion in a manipulated market: Anatomy of a squeeze. Journal of Financial Economics77:171–218.
* Ogut, H. Doganay, M. and Aktaş, R. (2009) ‘Detecting stock-price manipulation in an emerging market: the case of Turkey’, Expert Systems with Applications, Vol. 36, No. 9, pp.11944–11949.
* Punniyamoorthy M, Thoppan JJ. 2012. Detection of stock price manipulation using quadratic discriminant analysis, Int. J. Financial Services Management, Vol. 5, No. 4, pp.369–388.
* Rencher, A.C. (2002) Methods of Multivariate Analysis, 2nd ed. John Wiley & Sons, Inc. Publication. SEBI Adjudication Orders (2011), Available online at: http://www.sebi.gov.in/Index.jsp?contentDisp=SAT (accessed on 20 July 2011).
* Takayama Shino Ann. (2010) A dynamic strategy of the informed trader. Finance 6:287–294.
* TIME (2006) the Livedoor Scandal: Tribe versus Tribe. Available online at: http://www.time.com/time/world/article/0, 8599, 1151722, 00.html (accessed on 1 May 2011).
* Tissaoui, K. and Aloui, C. (2011) ‘Information flow between stock return and trading volume: the Tunisian stock market’, International Journal of Financial Services Management, Vol. 5, No. 1, pp.52–82.