Hydrolysis kinetics and electrophoresis pattern of the impact of the kiwi fruit actinidine on different proteins of Rainbow Trout meat
Subject Areas : food scienceS. BagheriKakash 1 , M. Hojjatoleslamy 2 , G. Babaei 3 , H. Molavi 4
1 - M. Sc. Student, Faculty of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
2 - Associate Professor, Faculty of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
3 - Agricultural Jihad Research Center, Shahrekord, Iran.
4 - Assistant Professor, Faculty of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
Keywords: Hydrolysis degree, Kiwi, electrophoresis, fish, Hydrolysis kinetic,
Abstract :
Different methods are used to improve the quality of meat, one of which is to add proteolytic enzymes to the meat and tenderize it, thereby increasing the solubility of its proteins. Physical and chemical methods tenderize the meat by reducing or degrading myofibrillar proteins and connective tissues. In this study, the impact of kiwi protein on the physicochemical properties of Rainbow Trout meat was investigated. 2 cm cube pieces of fish meat were marinated in 20 ml of kiwi protein with the activity of 0.9 u/ml for a duration of 2, 4, 6, 8, 24, 48, 72, and 96 hours and then kept at 4 ± 1˚C. Afterwards, the actinidine enzyme was inactivated at 60°C for 10 minutes and the specimens were evaluated. The results showed that the hydrolysis of the muscle and the released amino acids significantly reduced the treatments pH in comparison to the control sample. The duration of enzyme activity significantly influenced the decomposition of fish meat proteins, increased the solubility and degree of hydrolysis, and reduced the peptide chain average length. The protein enzyme kinetic equation was suitable for modeling the enzymatic reaction of fish meat; the influence of kinetic parameters on enzyme and substrate variables was further investigated. Changing the concentration of the enzyme and substrate did not affect the parameter b but it positively influenced the parameter a. The results of SDS-PAGE electrophoresis showed that the kiwi enzyme enhanced the fish meat tenderness by affecting the sarcoplasmic and myofibrillar proteins.
Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. London: Elsevier Applied Science. ISBN: 0-85334-386-1.
Afshar-Mohammadian, M., Rahimi-Koldeh, J. & Sajedi, R. (2011). The comparison of protease activity and total protein in three cultivars of kiwifruit of Northern Iran during fruit development. Acta Physiologiae Plantarum, 33(2), 343-348. http://dx.doi.org/10.1007/s11738-010-0553-3.
Alsmeyer, R. H., Cunningham, A.E. & Happich, M.L. (1974). Equations predict PER from amino acid analysis. Food Technology, 7 (28), 34–40. http://agris.fao.org/agris-search/search.do?recordID=US201303166075.
Aspmo, S. I., Horn, S. J. & Vincent, G.H. (2005). Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 5(40), 1957-1966. https://doi.org/10.1016/j.procbio.2004.07.011
Baek, H. & Cadwallader, K. (1995). Enzymatic hydrolysis of crayfish processing by‐products. Journal of Food Science, 60(5), 929-935. http://dx.doi.org/10.1111/j.1365-2621.1995.tb06264.x.
Bagherikakash, S., Hojjatoleslamy, M., Babaei, G. & Molavi, H. (2019). Kinetic study of the effect of kiwi fruit actinidin on various proteins of chicken meat. Food Science and Technology, 39(4), 980-992. DOI:Dhttps://doi.org/10.1590/fst.14118
Batista, I., Ramos, C., Coutinho, J., Bandarra, N. & Nunes, M. (2010). Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45(1), 18-24. https://doi.org/10.1016/j.procbio.2009.07.019
Cao, W., Zhang, C., Hong, J. & Ji, H. (2008). Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis. Food Chemistry, 109(1), 176-183. http://dx.doi.org/10.1016/j.foodchem.2007.11.080. PMid:26054279.
Carne, A. & Moore, C. H. (1978). The amino acid sequence of the tryptic peptides from actinidin, a proteolytic enzyme from the fruit of Actinidia chinensis. The Biochemical Journal, 173(1),73-83. http://dx.doi.org/10.1042/bj1730073. PMid:687380.
Chavira, R. J., Burnett, T. J. & Hageman, J. H. (1984). Assaying proteinases with azocoll. Analytical biochemistry, 136(2), 446-450. https://doi.org/10.1016/0003-2697(84)90242-2
Christensen, M., Tørngren, M., Gunvig, A., Rozlosnik, N., Lametsch, R., Karlsson, A. & Ertbjerg, P. (2009). Injection of marinade with actinidin increases tenderness of porcine M. biceps femoris and affects myofibrils and connective tissue. Journal of the Science of Food and Agriculture, 89(9), 1607-1614. https://doi.org/10.1002/jsfa.3633
Claeys, E., Uytterhaegen, L., Buts, B. & Demeyer, D. (1995). Quantification of beef myofibrillar proteins. Meat Science, 39(2), 177-193. http://dx.doi.org/10.1016/0309-1740(94)P1819-H. PMid:22059824.
El‐Gharbawi, M. & Whitaker, J. (2006). Factors affecting enzymatic solubilization of beef proteins. Journal of Food Science, 28(2), 168-172. http://dx.doi.org/10.1111/j.1365-2621.1963.tb00177.x.
Englund, P., King, T., Craig, L. & Walti, A. (1968). Ficin. I. Its isolation and characterization. Biochemistry, 7(1), 163-175. http://dx.doi.org/10.1021/bi00841a021. PMid:5758541.hin
Fatemi, H. (2016). Food chemistry. Tehran: Sahami Enteshatr.
Garg, V. & Mendiratta, S. (2006). Studies on tenderization and preparation of enrobed pork chunks in microwave oven. Meat Science, 74(4), 718-726. http://dx.doi.org/10.1016/j.meatsci.2006.06.003. PMid:22063229.
Gault, N. (1985). The relationship between water-holding capacity and cooked meat tenderness in some beef muscles as influenced by acidic conditions below the ultimate pH. Meat Science, 15(1), 15-30. http://dx.doi.org/10.1016/0309-1740(85)90071-3. PMid:22056073.
Gilman, A., Philips, F. S., Koelle, E. S., Allen, R. P. & St. John, E. (1946). The metabolic reduction and nephrotoxic action of tetrathionate in relation to a possible interaction with sulfhydryl compounds. The American Journal of Physiology, 147(1), 115-126. http://dx.doi.org/10.1152/ajplegacy.1946.147.1.115. PMid:21000729.
Goli, T., Abi Nakhoul, P., Zakhia-Rozis, N., Trystram, G. & Bohuon, P. (2007). Chemical equilibrium of minced turkey meat in organic acid solutions. Meat Science, 75(2), 308-314. http://dx.doi.org/10.1016/j.meatsci.2006.07.016. PMid:22063663.
Gonzàlez-Tello, P., Camacho, F., Jurado, E., Páez, M. P. & Guadix, E. M. (1994). Enzymatic hydrolysis of whey proteins:I. kinetic models. Biotechnology and Bioengineering, 44(4), 523-528. http://dx.doi.org/10.1002/bit.260440415. PMid:18618786.
Ha, M., Bekhit, A. D., Carne, A. & Hopkins, D. (2012). Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chemistry, 134(1), 95-105. http://dx.doi.org/10.1016/j.foodchem.2012.02.071.
Han, J., Morton, J., Bekhit, A. & Sedcole, J. (2009). Pre-rigor infusion with kiwifruit juice improves lamb tenderness. Meat Science, 82(3), 324-330. http://dx.doi.org/10.1016/j.meatsci.2009.02.003. PMid:20416722.
Hevia, P., Whitaker, J. & Olcott, H. (1976). Solubilization of a fish protein concentrate with proteolytic enzymes. Journal of Agricultural and Food Chemistry, 24(2), 383-385. http://dx.doi.org/10.1021/jf60204a048. PMid:1254819.
Hoyle, N. T. & Merritt, J. H. (1994). Quality of Fish Protein Hydrolysates from Herring (Clupea harengus). Journal of Food Science, 1(59), 76-79. https://doi.org/10.1111/j.1365-2621.1994.tb06901.x.
Huff-Lonergan, E., Parrish, F.C. & Robson, R. M. (1995). Effects of postmortem aging time, animal age, and sex on degradation of titin and nebulin in bovine longissimus muscle. 4 (73), 1064-1073. https://doi.org/10.2527/1995.7341064x.
Joo, S., Kauffman, R. G., Kim, B. C. & Park, G. B. (1999). The relationship of sarcoplasmic and myofibrillar protein solubility to colour and water-holding capacity in porcine longissimus muscle. Meat Science, 52(3), 291-297. http://dx.doi.org/10.1016/S0309-1740(99)00005-4. PMid:22062578.
Kaur, L., Rutherfurd, S., Moughan, P., Drummond, L. & Boland, M. (2010). Actinidin enhances gastric protein digestion as assessed using an in vitro gastric digestion model. Journal of Agricultural and Food Chemistry, 58(8), 5068-5073. https://pubs.acs.org/doi/10.1021/jf903332a.
Ketnawa, S. & Rawdkuen, S. (2011). Application of bromelain extract for muscle foods tenderization. Food and Nutrition Sciences, 2(5), 1-9. http://dx.doi.org/10.4236/fns.2011.25055.
Kim, K.S., Lee, S.Y. & Kee, K.W. (1981). Studies on tenderization of meat by use of proteolytic enzymes: study on the properties of proteolytic enzymes. Research reports of the office of rural development. Livestock and Veterinary (Korea R.), 23,75-83. http://agris.fao.org/agris-search/search.do?recordID=XB8235093.
Klompong, V., Benjakul, S., Kantachote, D. & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102(4), 1317-1327. https://doi.org/10.1016/j.foodchem.2006.07.016.
Koak, J. H., Kim, H. S., Choi, Y., Baik, M. Y. & Kim, B. Y. (2011). Characterization of a protease from over-matured fruits and development of a tenderizer using an optimization technique. Food Science and Biotechnology, 20(2), 485-490. http://dx.doi.org/10.1007/s10068-011-0067-9.
Kowlessur, D., O’Driscoll, M., Topham, C., Templeton, W., Thomas, E. & Brocklehurst, K. (1989). The interplay of electrostatic fields and binding interactions determining catalytic-site reactivity in actinidin: a possible origin of differences in the behaviour of actinidin and papain. The Biochemical Journal, 259(2), 443-452. http://dx.doi.org/10.1042/bj2590443. PMid:2719659
Kristinsson, H. (1998). Reaction kinetics, biochemical and functional properties of salmon muscle proteins hydrolyzed by different alkaline proteases. Washington: University of Washington.
Kristinsson, H. & Rasco, B. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43-81. http://dx.doi.org/10.1080/10408690091189266. PMid:10674201.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature, 227(5259), 680-685. DOI:10.1038/227680a0
Lawrie, R. & Ledward, D. (2006). Lawrie’s meat science (7th ed.). Cambridge: Woodhead Publishing. http://dx.doi.org/10.1533/9781845691615.
Lewis, D. & Luh, B. S. (1988). Application of actinidin from kiwifruit to meat tenderization and characterization of beef muscle protein hydrolysis. Journal of Food Biochemistry, 12(3), 147-158. http://dx.doi.org/10.1111/j.1745-4514.1988.tb00368.x.
Liaset, B., Lied, E. & Espe, M. (2000). Enzymatic hydrolysis of by-products from the fish-filleting industry: chemical characterisation and nutritional evaluation. Journal of the Science of Food and Agriculture, 80(5), 581-589. http://dx.doi.org/10.1002/(SICI)1097-0010(200004)80:5<581::AID-JSFA578>3.0.CO;2-I.
Linder, M., Fanni, J., Parmentier, M., Sergent, M. & Phan-Tan-Luu, R. (1995). Protein recovery from veal bones by enzymatic hydrolysis. Food Science, 60(5), 949-952. http://dx.doi.org/10.1111/j.1365-2621.1995.tb06268.x.
Mahmoud, M., Malone, W. T. & Cordle, C. T. (1992). Enzymatic hydrolysis of casein. effect of degree of hydrolysis on antigenicity and physical properties. Journal of Food Science, 57(5), 1223-1229. http://dx.doi.org/10.1111/j.1365-2621.1992.tb11304.x.
Marambe, P., Shand, P. & Wanasundara, J. (2008). An in-vitro investigation of selected biological activities of hydrolysed flaxseed (Linum usitatissimum L.) proteins. Journal of the American Oil Chemists’ Society, 85(12), 1155-1164. http://dx.doi.org/10.1007/s11746-008-1293-z.
Marcos, B., Kerry, J.P. & Mullen, A.M. (2010). High pressure induced changes on sarcoplasmic protein fraction and quality indicators. Meat Science, 1(85), 115-20. https://doi.org/10.1016/j.meatsci.2009.12.014
Mahmoud, M.I. (1994). Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technology, 59,89– 94. https://ci.nii.ac.jp/naid/10025368874/.
Molina, I. & Toldrá, F. (1992). Detection of proteolytic activity in microorganisms isolated from dry cured ham. Journal of Food Science, 57(6), 1308-1310. http://dx.doi.org/10.1111/j.1365-2621.1992.tb06843.x.
Mortazavi, A., Salary, R. & Zia ul Haq, H. (2007). Modeling of food processes. Mashhad:Mashhad Ferdowsi University. https://doi.org/10.1016/C2013-0-16519-1.
Mutilangi, W. A. M., Panyam, D. & Kilara, A. (1995). Hydrolysates from proteolysis of heat‐denatured whey proteins. Food Science, 60(5), 1104-1109. http://dx.doi.org/10.1111/j.1365-2621.1995.tb06302.x.
Naveena, B. M., Mendiratta, S. K. & Anjaneyulu, A. S. (2004). Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale roscoe (Ginger rhizome). Meat Science, 68(3), 363-369. http://dx.doi.org/10.1016/j.meatsci.2004.04.004. PMid:22062404.
Ovissipour, M., Benjakul, S., Safari, R. & Motamedzadegan, A. (2010). Fish protein hydrolysates production from yellowfin tuna Thunnus albacares head using Alcalase and Protamex. International Aquatic Research., 2(2), 87-95. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=118537
Paul, W., Amiss, J., Try, R., Praekelt, U., Scott, R. & Smith, H. (1995). Correct processing of the kiwifruit protease actinidin in transgenic tobacco requires the presence of the C-terminal propeptide. Plant Physiology, 108(1), 261-268. http://dx.doi.org/10.1104/pp.108.1.261. PMid:7784505.
Qian, J., Zhang, H. & Liao, Q. (2011). The properties and kinetics of enzymatic reaction in the process of the enzymatic extraction of fish oil. Journal of Food Science and Technology, 48(3), 280-284. http://dx.doi.org/10.1007/s13197-010-0128-8. PMid:23572747.
Quaglia, G. & Orban, E. (1987). Influence of the degree of hydrolysis on the solubility of the protein hydrolysates from sardine (Sardina pilchardus). Journal of the Science of Food and Agriculture, 38(3), 271-276. http://dx.doi.org/10.1002/jsfa.2740380311.
Rawdkuen, S., Jaimakreu, M. & Benjakul, S. (2013). Physicochemical properties and tenderness of meat samples using proteolytic extract from Calotropis procera latex. Food Chemistry, 136(2), 909-916. http://dx.doi.org/10.1016/j.foodchem.2012.08.077. PMid:23122144.
Safdari, Y., Saeedi Asl, M. R., Safari, R. & Jahed, J. (2014). Evaluation of enzymatic hydrolysis of rodent entrails and utilization of hydrolyzate as a source of peptone for Lactobacillus plantarum growth. Journal of Innovation in Food Science and Technology, 6(3), 17-26.
Shahidi, F., Han, X. & Synowiecki, J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry, 53(3), 285-293. http://dx.doi.org/10.1016/0308-8146(95)93934-J.
Shargel, L., Wu-Pong, S. & Yu, A. B. C. (2005). Applied biopharmaceutics and pharmacokinetics (5th ed.). New York:McGraw-Hill. ISBN: 0-07-137550-3.
Šližytė, R., Daukšas, E., Falch, E., Storrø, I. & Rustad, T. (2005). Characteristics of protein fractions generated from hydrolysed cod (Gadus morhua) by-products. Process Biochemistry, 40(6), 2021-2033. https://doi.org/10.1016/j.procbio.2004.07.016
Souissi, N., Bougatef, A., Triki-Ellouz, Y. & Nasr, M. (2007). Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food Technology and Biotechnology, 45(2), 187-194. https://hrcak.srce.hr/27772.
Taylor, W. J. & Diers-Caviness, M. H. (2003). A textbook of the clinical application of therapeutic drug monitoring. Irving:Diagnostic Division,Abbott Laboratories. ISBN: 0961490306, 9780961490300.
Tavakoli, H., Aghazadeh Mashghi, M., Dabbagh Moghaddam, A. & Sadeghzadeh Araqi, A. (2005). TextBook Of Meat Hygiene and Inspection. Marze danesh.
Toohey, E. S., Kerr, M. J., Van de Ven, R. & Hopkins, D. L. (2011). The effect of a kiwi fruit based solution on meat traits in beef m. semimembranosus (topside). Meat Science, 88(3), 468-471. http:// dx.doi.org/10.1016/j.meatsci.2011.01.028. PMid:21345602.
Wada, M., Suzuki, T., Yaguti, Y. & Hasegawa, T. (2002). The effects of pressure treatments with kiwi fruit protease on adult cattle semitendinosus muscle. FoodChemistry,78(2), 167-171. http:// dx.doi.org/10.1016/S0308-8146(01)00395-8.