The recent applications of Nanofiltration in food processing industries
Subject Areas : food science
fateme Behroozi
1
,
Hamed Ahari
2
*
,
Amir Khosrojerdi
3
,
Amir Ali Anvar
4
,
sara allahyaribeik
5
1 - Department of Water Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - گروه علوم و مهندسی صنایع غذایی، واحد علوم وتحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران.
3 - گروه علوم و مهندسی آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - دانشیار گروه بهداشت ، دانشگاه علوم و تحقیقات ، دانشگاه آزاد اسلامی ، تهران ، ایران
5 - استادیار گروه بهداشت محیط زیست،دانشکده منابع طبیعی و محیط زیست،دانشگاه علوم و تحقیقات تهران،تهران،ایران
Keywords: Nanofiltration, desalination, Graphene-oxide, thin-film nanocomposite, food industries, water and wastewater treatment,
Abstract :
Abstract: NF membranes are now commonly used because employing reverse osmosis membranes has resulted in excessive expenses. Because they can remove organic materials and soften water, nanofiltration membranes may quickly destroy soluble particles. Nanofiltration membranes are essential for desalinating industrial areas and treating water. The world is facing insoluble water problems and using NF is a realistic means to solve these issues and a practical way to get access to fresh, safe, and clean water. The food industry is one of the main contributors to microbial and chemical pollution of water sources, dairy wastewater plays an important role and it is suspected that a large amount of milk is wasted, producing a lot of wastewater. Although the amount of protein is high, the protein in the water can be reused and improve water quality, and the treatment of wastewater can significantly reduce the cost and pollution of water, as a result, using nanofiltration membranes material for food industry effluent is attracting the growing amount of attention and indeed, there is a large variety of nanofiltration construction that can practically apply for water and wastewater treatment along with different water quality such as acidic and alkaline environment. In fact, many nanofiltration techniques can be applied to water and wastewater treatment based on different attitudes such as acidity and alkalinity. After carefully examining NF technology, the study showed that the use of nano-pioneering technology such as nanofiltration membranes improves water quality and reduces microbial and chemical pollution.
Abdel-Fatah, M. A. (2018). Nanofiltration systems and applications in wastewater treatment: Review article Production and hosting by Elsevier. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2018.08.001
Abdel-Fatah, M. A. (2023). Integrated Management of IndustrialWastewater in the Food Sector. Sustainability, 15, 16193. https://doi.org/10.3390/su152316193
Akbar Heidari, A., & Mahdavi, H. (2023). Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. The Chemical Record, 23(12). https://doi.org/10.1002/tcr.202300189
Akbari, A., Meragawi, S. E., Martin, S. T., Corry, B., Shamsaei, E., Easton, C. D., Bhattacharyya, D., & Majumder, M. (2018). Solvent Transport Behavior of Shear Aligned Graphene Oxide Membranes and Implications in Organic Solvent Nanofiltration. ACS Applied Materials and Interfaces, 10(2). https://doi.org/10.1021/acsami.7b11777
Akbari, A., Sheath, P., Martin, S. T., Shinde, D. B., Shaibani, M., Banerjee, P. C., Tkacz, R., Bhattacharyya, D., & Majumder, M. (2016). Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nature Communications, 7. https://doi.org/10.1038/ncomms10891
Alghamdi, M. M., El-Zahhar, A. A., & Alshahrani, N. M. (2022). Magnetite nanoparticles-incorporated composite thin-film nanofiltration membranes based on cellulose nitrate substrate. Chemical Papers, 76(8). https://doi.org/10.1007/s11696-022-02204-1
Ali, I., Neskoromnaya, E. A., Melezhik, A. V., Babkin, A. V., Kulnitskiy, B. A., Burakov, A. E., Burakova, I. V., Tkachev, A. G., Almalki, A. S. A., & Alsubaie, A. (2022). Magnetically active nanocomposite aerogels: preparation, characterization and application for water treatment. Journal of Porous Materials, 29(2). https://doi.org/10.1007/s10934-021-01175-0
Alonso, E., Sanchez-Huerta, C., Ali, Z., Wang, Y., Fortunato, L., & Pinnau, I. (2024). Evaluation of nanofiltration and reverse osmosis membranes for efficient rejection of organic micropollutants. Journal of Membrane Science, 693, 122357. https://doi.org/10.1016/j.memsci.2023.122357
Amjad-Iranagh, S., Mahimani, P. (2024). The Effect of Nanofillers in Pollution and Environment. In: Mallakpour, S., Hussain, C.M. (eds) Handbook of Nanofillers. Springer, Singapore. https://doi.org/10.1007/978-981-99-3516-1_59-1
An, Y.-C., Gao, X.-X., Jiang, W.-L., Han, J.-L., Ye, Y., Chen, T.-M., Ren, R.-Y., Zhang, J.-H., Liang, B., Li, Z.-L., Wang, A.-J., & Ren, N.-Q. (2023). A critical review on graphene oxide membrane for industrial wastewater treatment. Environmental Research, 223, 115409. https://doi.org/10.1016/j.envres.2023.115409
Ang, M. B. M. Y., Tang, C. L., De Guzman, M. R., Maganto, H. L. C., Caparanga, A. R., Huang, S. H., Tsai, H. A., Hu, C. C., Lee, K. R., & Lai, J. Y. (2020). Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment. Desalination, 481. https://doi.org/10.1016/j.desal.2020.114352
Asgharnejad, H., Khorshidi Nazloo, E., Madani Larijani, M., Hajinajaf, N., & Rashidi, H. (2021). Comprehensive review of water management and wastewater treatment in food processing industries in the framework of water-food-environment nexus. In Comprehensive Reviews in Food Science and Food Safety (Vol. 20, Issue 5). https://doi.org/10.1111/1541-4337.12782
Bassyouni, M., Abdel-Aziz, M. H., Zoromba, M. S., Abdel-Hamid, S. M. S., & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification. In Journal of Industrial and Engineering Chemistry (Vol. 73). https://doi.org/10.1016/j.jiec.2019.01.045
Behroozi, A. H., Al-Shaeli, M., & Vatanpour, V. (2023). Fabrication and modification of nanofiltration membranes by solution electrospinning technique: A review of influential factors and applications in water treatment. In Desalination (Vol. 558). https://doi.org/10.1016/j.desal.2023.116638
Bi, H., Xie, X., Yin, K., Zhou, Y., Wan, S., He, L., Xu, F., Banhart, F., Sun, L., & Ruoff, R. S. (2012). Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Advanced Functional Materials, 22(21). https://doi.org/10.1002/adfm.201200888
Bóna, Á., Galambos, I., & Nemestóthy, N. (2023). Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. In Membranes (Vol. 13, Issue 4). https://doi.org/10.3390/membranes13040368
Cadotte, J., Forester, R., Kim, M., Petersen, R., & Stocker, T. (1988). Nanofiltration membranes broaden the use of membrane separation technology. Desalination, 70(1–3). https://doi.org/10.1016/0011-9164(88)85045-8
Chang, Y., Shen, Y., Kong, D., Ning, J., Xiao, Z., Liang, J., & Zhi, L. (2017). Fabrication of the reduced preoxidized graphene-based nanofiltration membranes with tunable porosity and good performance. RSC Advances, 7(5). https://doi.org/10.1039/C6RA24746F
Chen, L., Li, Y., Chen, L., Li, N., Dong, C., Chen, Q., Liu, B., Ai, Q., Si, P., Feng, J., Zhang, L., Suhr, J., Lou, J., & Ci, L. (2018). A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chemical Engineering Journal, 345. https://doi.org/10.1016/j.cej.2018.03.136
Chen, L., Moon, J. H., Ma, X., Zhang, L., Chen, Q., Chen, L., Peng, R., Si, P., Feng, J., Li, Y., Lou, J., & Ci, L. (2018). High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification. Carbon, 130. https://doi.org/10.1016/j.carbon.2018.01.062
Cheng, X., Lai, C., Zhu, X., Shao, S., Xu, J., Zhang, F., Song, J., Wu, D., Liang, H., & Luo, X. (2023). Tailored ultra-low pressure nanofiltration membranes for advanced drinking water treatment. Desalination, 548. https://doi.org/10.1016/j.desal.2022.116264
Cheng, X., Qin, Y., Ye, Y., Chen, X., Wang, K., Zhang, Y., Figoli, A., & Drioli, E. (2021). Finely tailored pore structure of polyamide nanofiltration membranes for highly-efficient application in water treatment. Chemical Engineering Journal, 417. https://doi.org/10.1016/j.cej.2020.127976
Choudhury, R. R., Gohil, J. M., Mohanty, S., & Nayak, S. K. (2018). Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. Journal of Materials Chemistry A, 6(2), 313–333. https://doi.org/10.1039/C7TA08627J
Chun, Y., Qing, L., Sun, G., Bilad, M. R., Fane, A. G., & Chong, T. H. (2018). Prototype aquaporin-based forward osmosis membrane: Filtration properties and fouling resistance. Desalination, 445. https://doi.org/10.1016/j.desal.2018.07.030
Cui, Y., Lan, H., Tang, Q., An, X., Liu, H., & Qu, J. (2024). C3N4-interlayer-mediated interfacial polymerization of homopolymer nanofiltration membranes for efficient water purification. Journal of Membrane Science, 693, 122350.
Cuperus, F. P., & Nijhuis, H. H. (1993). Applications of membrane technology to food processing. In Trends in Food Science and Technology (Vol. 4, Issue 9). https://doi.org/10.1016/0924-2244(93)90070-Q
Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S., & Chowdhury, Z. Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. In Desalination (Vol. 336, Issue 1). https://doi.org/10.1016/j.desal.2013.12.026
Daufin, G., Escudier, J. P., Carrére, H., Bérot, S., Fillaudeau, L., & Decloux, M. (2001). Recent and emerging applications of membrane processes in the food and dairy industry. Food and Bioproducts Processing: Transactions of the Institution of of Chemical Engineers, Part C, 79(2). https://doi.org/10.1016/S0960-3085(01)70244-1
Davarnejad, R., Nikseresht, M., & Ajideh, I. (2018). An efficient technique for dairy wastewater treatment. International Journal of Dairy Technology, 71(2). https://doi.org/10.1111/1471-0307.12475
Dehghani, M. H., Ahmadi, S., Ghosh, S., Khan, M. S., Othmani, A., Khanday, W. A., Gökkuş, Ö., Osagie, C., Ahmaruzzaman, M., Mishra, S. R., Lima, E. C., Mubarak, N. M., Karri, R. R., & Ansari, K. (2024). Sustainable remediation technologies for removal of pesticides as organic micro-pollutants from water environments: A review. Applied Surface Science Advances, 19, 100558. https://doi.org/10.1016/j.apsadv.2023.100558
Déon, S., Lam, B., & Fievet, P. (2018). Application of a new dynamic transport model to predict the evolution of performances throughout the nanofiltration of single salt solutions in concentration and diafiltration modes. Water Research, 136. https://doi.org/10.1016/j.watres.2018.02.038
Divyadeepika, Yadav, K., Joshi, J. (2023). Fluoride Pollution Control Techniques and Principles. In: Yadav, A.K., Shirin, S., Singh, V.P. (eds) Advanced Treatment Technologies for Fluoride Removal in Water. Water Science and Technology Library, vol 125 . Springer, Cham. https://doi.org/10.1007/978-3-031-38845-3_3
Dmitrenko, M., Sushkova, X., Chepeleva, A., Liamin, V., Mikhailovskaya, O., Kuzminova, A., Semenov, K., Ermakov, S., & Penkova, A. (2023). Modification Approaches of Polyphenylene Oxide Membranes to Enhance Nanofiltration Performance. Membranes, 13(5). https://doi.org/10.3390/membranes13050534
El-sayed, M. E. A. (2020). Nanoadsorbents for water and wastewater remediation. In Science of the Total Environment (Vol. 739). https://doi.org/10.1016/j.scitotenv.2020.139903
El-Zahhar, A. A., Alghamdi, M. M., Alshahrani, N. M., Awwad, N. S., & Idris, A. M. (2022). Development of Composite Thin-Film Nanofiltration Membranes Based on Polyethersulfone for Water Purification. Journal of Polymers and the Environment, 30(10). https://doi.org/10.1007/s10924-022-02499-x
Epsztein, R., Shaulsky, E., Dizge, N., Warsinger, D. M., & Elimelech, M. (2018). Role of Ionic Charge Density in Donnan Exclusion of Monovalent Anions by Nanofiltration. Environmental Science and Technology, 52(7). https://doi.org/10.1021/acs.est.7b06400
Evdochenko, E., Kamp, J., Femmer, R., Xu, Y., Nikonenko, V. V., & Wessling, M. (2020). Unraveling the effect of charge distribution in a polyelectrolyte multilayer nanofiltration membrane on its ion transport properties. Journal of Membrane Science, 611. https://doi.org/10.1016/j.memsci.2020.118045
Faysal Hossain, M. D., Akther, N., & Zhou, Y. (2020). Recent advancements in graphene adsorbents for wastewater treatment: Current status and challenges. Chinese Chemical Letters, 31(10). https://doi.org/10.1016/j.cclet.2020.05.011
Feng, X., Peng, D., Zhu, J., Wang, Y., & Zhang, Y. (2022). Recent advances of loose nanofiltration membranes for dye/salt separation. Separation and Purification Technology, 285, 120228. https://doi.org/10.1016/j.seppur.2021.120228
Gao, T., Huang, L., Li, C., Xu, G., & Shi, G. (2017). Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration. Carbon, 124. https://doi.org/10.1016/j.carbon.2017.08.042
Gao, T., Wu, H., Tao, L., Qu, L., & Li, C. (2018). Enhanced stability and separation efficiency of graphene oxide membranes in organic solvent nanofiltration. Journal of Materials Chemistry A, 6(40). https://doi.org/10.1039/c8ta07147k
Gohil, J. M., & Ray, P. (2017). A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination. In Separation and Purification Technology (Vol. 181). https://doi.org/10.1016/j.seppur.2017.03.020
Gu, Z., Li, P., Gao, X., Qin, Y., Pan, Y., Zhu, Y., Yu, S., Xia, Q., Liu, Y., Zhao, D., & Liu, G. (2021). Surface-crumpled thin-film nanocomposite membranes with elevated nanofiltration performance enabled by facilely synthesized covalent organic frameworks. Journal of Membrane Science, 625. https://doi.org/10.1016/j.memsci.2021.119144
Guo, H., Li, X., Yang, W., Yao, Z., Mei, Y., Peng, L. E., Yang, Z., Shao, S., & Tang, C. Y. (2022). Nanofiltration for drinking water treatment: a review. Frontiers of Chemical Science and Engineering, 16(5), 681–698. https://doi.org/10.1007/s11705-021-2103-5
Guo, L., Yang, Y., Dong, D., Liang, F., Zhang, Y., Zhu, Y., Jin, J., & Hou, L. (2024). Hydrophilic carbon-carbon covalent linkage network structure for strong acid/alkali resistant and antifouling nanofiltration membrane. Journal of Membrane Science, 693, 122356. https://doi.org/10.1016/j.memsci.2023.122356
Han, R., & Wu, P. (2019). High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene. Journal of Materials Chemistry A, 7(11). https://doi.org/10.1039/c9ta00137a
Ji, Y., Qian, W., Yu, Y., An, Q., Liu, L., Zhou, Y., & Gao, C. (2017). Recent developments in nanofiltration membranes based on nanomaterials. Chinese Journal of Chemical Engineering, 25(11), 1639–1652. https://doi.org/10.1016/j.cjche.2017.04.014
Ji, Y.-L., Gu, B.-X., An, Q.-F., & Gao, C.-J. (2017). Recent Advances in the Fabrication of Membranes Containing “Ion Pairs” for Nanofiltration Processes. Polymers, 9(12), 715. https://doi.org/10.3390/polym9120715
Jin, L., Hu, L., Liang, S., Wang, Z., Xu, G., & Yang, X. (2022). A novel organic solvent nanofiltration (OSN) membrane fabricated by Poly(m-phenylene isophthalamide) (PMIA) under large-scale and continuous process. Journal of Membrane Science, 647. https://doi.org/10.1016/j.memsci.2022.120259
Joseph, T. M., Al-Hazmi, H. E., Śniatała, B., Esmaeili, A., & Habibzadeh, S. (2023). Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. Environmental Research, 238, 117114. https://doi.org/10.1016/j.envres.2023.117114
Joshi, N. C., & Gururani, P. (2022). Advances of graphene oxide based nanocomposite materials in the treatment of wastewater containing heavy metal ions and dyes. Current Research in Green and Sustainable Chemistry, 5, 100306. https://doi.org/10.1016/j.crgsc.2022.100306
Kandjou, V., Acevedo, B., & Melendi-Espina, S. (2023). Systematic covalent crosslinking of graphene oxide membranes using 1,3,5 triazine 2,4,6 triamine for enhanced structural intactness and improved nanofiltration performance. Results in Engineering, 18. https://doi.org/10.1016/j.rineng.2023.101036
Khan, N. A., Khan, S. U., Ahmed, S., Farooqi, I. H., Dhingra, A., Hussain, A., & Changani, F. (2019). Applications of nanotechnology in water and wastewater treatment: A review. Asian Journal of Water, Environment and Pollution, 16(4). https://doi.org/10.3233/AJW190051
Khoo, Y. S., Goh, P. S., Lau, W. J., Ismail, A. F., Abdullah, M. S., Mohd Ghazali, N. H., Yahaya, N. K. E. M., Hashim, N., Othman, A. R., Mohammed, A., Kerisnan, N. D. A., Mohamed Yusoff, M. A., Fazlin Hashim, N. H., Karim, J., & Abdullah, N. salmi. (2022). Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: A review. In Chemosphere (Vol. 305). https://doi.org/10.1016/j.chemosphere.2022.135151
Kim, E. S., Hwang, G., Gamal El-Din, M., & Liu, Y. (2012). Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. Journal of Membrane Science, 394–395. https://doi.org/10.1016/j.memsci.2011.11.041
Kumar, M. (2015). Self-assembling, biomimetic membranes may aid water filtration. Membrane Technology, 2015(11). https://doi.org/10.1016/S0958-2118(15)30223-8
Kumari, P., Tripathi, K. M., Jangir, L. K., Gupta, R., & Awasthi, K. (2021). Recent advances in application of the graphene-based membrane for water purification. Materials Today Chemistry, 22. https://doi.org/10.1016/j.mtchem.2021.100597
Lau, W. J., Ismail, A. F., Misdan, N., & Kassim, M. A. (2012). A recent progress in thin film composite membrane: A review. Desalination, 287. https://doi.org/10.1016/j.desal.2011.04.004
Lee, B., Suh, D. W., Hong, S. P., & Yoon, J. (2019). A surface-modified EDTA-reduced graphene oxide membrane for nanofiltration and anti-biofouling prepared by plasma post-treatment. Environmental Science: Nano, 6(7). https://doi.org/10.1039/c8en01400k
Lee, J., Shin, Y., Boo, C., & Hong, S. (2023). Performance, limitation, and opportunities of acid-resistant nanofiltration membranes for industrial wastewater treatment. Journal of Membrane Science, 666, 121142. https://doi.org/10.1016/j.memsci.2022.121142
Lenaerts, M., Thijs, M., Dhondt, R., Van Goethem, C., Chi, H. Y., Agrawal, K. V., ... & Koeckelberghs, G. (2024). Development of tuneable polyamine top layer for nanofiltration with high stability in bleach and at extreme pHs. Journal of Membrane Science, 693, 122341.
Li, C., Sun, W., Lu, Z., Ao, X., & Li, S. (2020). Ceramic nanocomposite membranes and membrane fouling: A review. In Water Research (Vol. 175). https://doi.org/10.1016/j.watres.2020.115674
Li, H., Li, X., Ouyang, G., Huang, L., Li, L., Li, W., Huang, W., & Li, D. (2024). Ultrathin organic solvent nanofiltration membrane with polydopamine-HKUST-1 interlayer for organic solvent separation. Journal of Environmental Sciences, 141, 182-193. https://doi.org/10.1016/j.jes.2023.05.027
Li, S., Bai, L., Ding, J., Liu, Z., Li, G., & Liang, H. (2023). Nanofiltration membranes with salt-responsive ion valves for enhanced separation performance in brackish water treatment: A battle against the limitation of salt concentration. Environmental Science & Technology, 57(38), 14452-14463.
https://doi.org/10.1021/acs.est.3c03919
Lin, B., Heijman, S. G., & Rietveld, L. C. (2024). Catalytic pre-coat on ceramic nanofiltration membranes for segregation and Fenton cleaning of high-resistance colloids in direct surface water treatment. Journal of Membrane Science, 694, 122401.
Liu, C., Jiang, Y., Nalaparaju, A., Jiang, J., & Huang, A. (2019). Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment. Journal of Materials Chemistry A, 7(42). https://doi.org/10.1039/c9ta06325k
Liu, D., Cabrera, J., Zhong, L., Wang, W., Duan, D., Wang, X., Liu, S., & Xie, Y. F. (2021). Using loose nanofiltration membrane for lake water treatment: A pilot study. Frontiers of Environmental Science and Engineering, 15(4). https://doi.org/10.1007/s11783-020-1362-6
Liu, Z., Ma, Z., Qian, B., Chan, A. Y. H., Wang, X., Liu, Y., & Xin, J. H. (2021). A Facile and Scalable Method of Fabrication of Large-Area Ultrathin Graphene Oxide Nanofiltration Membrane. ACS Nano, 15(9). https://doi.org/10.1021/acsnano.1c06155
Liu, T., Wang, L., Wang, W., Yang, J., & Hu, Y. (2024). High-flux and chlorine-resistant nanofiltration membrane fabricated via phase inversion using polysulfone-b-polyglycerol hyperbranched block copolymer. Desalination, 575, 117314. https://doi.org/10.1016/j.desal.2024.117314
Ma, H., & Hsiao, B. S. (2018). Current advances on nanofiber membranes for water purification applications. In Filtering Media by Electrospinning: Next Generation Membranes for Separation Applications. https://doi.org/10.1007/978-3-319-78163-1_2
Mahalingam, D. K., Wang, S., & Nunes, S. P. (2018). Graphene Oxide Liquid Crystal Membranes in Protic Ionic Liquid for Nanofiltration. ACS Applied Nano Materials, 1(9). https://doi.org/10.1021/acsanm.8b00927
Mahalingam, D. K., Wang, S., & Nunes, S. P. (2019). Stable Graphene Oxide Cross-Linked Membranes for Organic Solvent Nanofiltration. Industrial and Engineering Chemistry Research, 58(51). https://doi.org/10.1021/acs.iecr.9b05169
Marjani, A., Nakhjiri, A. T., Adimi, M., Jirandehi, H. F., & Shirazian, S. (2020). Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58472-y
Meng, Z. Da, Zhu, L., Ye, S., Sun, Q., Ullah, K., Cho, K. Y., & Oh, W. C. (2013). Fullerene modification CdSe/TiO2 and modification of photocatalytic activity under visible light. Nanoscale Research Letters, 8(1). https://doi.org/10.1186/1556-276X-8-189
Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hilal, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226–254. https://doi.org/10.1016/j.desal.2014.10.043
Mohammadifakhr, M., Grooth, J. de, Roesink, H. D. W., & Kemperman, A. J. B. (2020). Forward osmosis: A critical review. In Processes (Vol. 8, Issue 4). https://doi.org/10.3390/PR8040404
Nam, Y. T., Choi, J., Kang, K. M., Kim, D. W., & Jung, H. T. (2016). Enhanced Stability of Laminated Graphene Oxide Membranes for Nanofiltration via Interstitial Amide Bonding. ACS Applied Materials and Interfaces, 8(40). https://doi.org/10.1021/acsami.6b09912
Ng, L. Y., Mohammad, A. W., & Ng, C. Y. (2013). A review on nanofiltration membrane fabrication and modification using polyelectrolytes: Effective ways to develop membrane selective barriers and rejection capability. In Advances in Colloid and Interface Science (Vols. 197–198). https://doi.org/10.1016/j.cis.2013.04.004
Nicolini, J. V., Borges, C. P., & Ferraz, H. C. (2016). Selective rejection of ions and correlation with surface properties of nanofiltration membranes. Separation and Purification Technology, 171. https://doi.org/10.1016/j.seppur.2016.07.042
Nie, L., Chuah, C. Y., Bae, T., & Lee, J. (2021). Graphene‐Based Advanced Membrane Applications in Organic Solvent Nanofiltration. Advanced Functional Materials, 31(6). https://doi.org/10.1002/adfm.202006949
Nishu, & Kumar, S. (2023). Smart and innovative nanotechnology applications for water purification. Hybrid Advances, 3. https://doi.org/10.1016/j.hybadv.2023.100044
Noukeu, N. A., Gouado, I., Priso, R. J., Ndongo, D., Taffouo, V. D., Dibong, S. D., & Ekodeck, G. E. (2016). Characterization of effluent from food processing industries and stillage treatment trial with Eichhornia crassipes (Mart.) and Panicum maximum (Jacq.). Water Resources and Industry, 16, 1–18. https://doi.org/10.1016/j.wri.2016.07.001
Oprčkal, P., Mladenovič, A., Vidmar, J., Mauko Pranjić, A., Milačič, R., & Ščančar, J. (2017). Critical evaluation of the use of different nanoscale zero-valent iron particles for the treatment of effluent water from a small biological wastewater treatment plant. Chemical Engineering Journal, 321. https://doi.org/10.1016/j.cej.2017.03.104
Paul, M., & Jons, S. D. (2016). Chemistry and fabrication of polymeric nanofiltration membranes: A review. In Polymer (Vol. 103). https://doi.org/10.1016/j.polymer.2016.07.085
Peng, H., Tang, Q., Tang, S., Gong, J., & Zhao, Q. (2019). Surface modified polyamide nanofiltration membranes with high permeability and stability. Journal of Membrane Science, 592. https://doi.org/10.1016/j.memsci.2019.117386
Peydayesh, M. (2022). Nanofiltration Membranes: Recent Advances and Environmental Applications. In Membranes (Vol. 12, Issue 5). https://doi.org/10.3390/membranes12050518
Priyadarshini, A., Tay, S. W., Ng, S., & Hong, L. (2020). Skinned carbonaceous composite membrane with pore channels bearing an anchored surfactant layer for nanofiltration. Journal of Membrane Science, 599. https://doi.org/10.1016/j.memsci.2019.117714
Putri, A. N., & Munasir, M. (2020). REVIEW : FABRIKASI MEMBRAN BERBASIS NANOFIBER DENGAN METODE ELECTROSPINNING. Inovasi Fisika Indonesia, 9(2). https://doi.org/10.26740/ifi.v9n2.p47-55
Qin, Y., Liu, H., Liu, Y., Chen, M., Chen, K., Huang, Y., & Xiao, C. (2020). Design of a novel interfacial enhanced GO-PA/APVC nanofiltration membrane with stripe-like structure. Journal of Membrane Science, 604. https://doi.org/10.1016/j.memsci.2020.118064
Qu, H., Xiao, X., Han, Z., Hu, M., Shen, S., Yang, L., Jia, F., Wang, T., Ye, Z., Sun, W., Wang, Y., Huang, L., Zhu, Z., Servati, P., Tang, J., & Chen, J. (2022). Graphene Oxide Nanofiltration Membrane Based on Three-Dimensional Size-Controllable Metal-Organic Frameworks for Water Treatment. ACS Applied Nano Materials, 5(4). https://doi.org/10.1021/acsanm.2c00234
Raaijmakers, M. J. T., & Benes, N. E. (2016). Current trends in interfacial polymerization chemistry. In Progress in Polymer Science (Vol. 63). https://doi.org/10.1016/j.progpolymsci.2016.06.004
Rashid, M. H. O., Triani, G., Scales, N., in het Panhuis, M., Nghiem, L. D., & Ralph, S. F. (2017). Nanofiltration applications of tough MWNT buckypaper membranes containing biopolymers. Journal of Membrane Science, 529. https://doi.org/10.1016/j.memsci.2017.01.040
Sairam, M., Loh, X. X., Bhole, Y., Sereewatthanawut, I., Li, K., Bismarck, A., Steinke, J. H. G., & Livingston, A. G. (2010). Spiral-wound polyaniline membrane modules for organic solvent nanofiltration (OSN). Journal of Membrane Science, 349(1–2). https://doi.org/10.1016/j.memsci.2009.11.039
Salehpour, A., Alizadeh, M., Ajalli, N., & Azamat, J. (2024). Arsenic removal from aqueous solution using PWN-type zeolite membrane: A theoretical investigation. Journal of Molecular Liquids, 395, 123952.
Sarkar, B., Chakrabarti, P. P., Vijaykumar, A., & Kale, V. (2006). Wastewater treatment in dairy industries - possibility of reuse. Desalination, 195(1–3). https://doi.org/10.1016/j.desal.2005.11.015
Scheepers, D., Borneman, Z., & Nijmeijer, K. (2024). Nanofiltration membrane performance of layer-by-layer membranes with different polyelectrolyte concentrations. Desalination, 574, 117246. https://doi.org/10.1016/j.desal.2023.117246
Shao, S., Zeng, F., Long, L., Zhu, X., Peng, L. E., Wang, F., Yang, Z., & Tang, C. Y. (2022). Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. Environmental Science & Technology, 56(18), 12811–12827. https://doi.org/10.1021/acs.est.2c04736
Shen, H., Wang, N., Ma, K., Wang, L., Chen, G., & Ji, S. (2017). Tuning inter-layer spacing of graphene oxide laminates with solvent green to enhance its nanofiltration performance. Journal of Membrane Science, 527. https://doi.org/10.1016/j.memsci.2017.01.003
Shrivastava, V., Ali, I., Marjub, M. M., Rene, E. R., & Soto, A. M. F. (2022). Wastewater in the food industry: Treatment technologies and reuse potential. Chemosphere, 293. https://doi.org/10.1016/j.chemosphere.2022.133553
Soares, S. F., Fernandes, T., Trindade, T., & Daniel-da-Silva, A. L. (2020). Recent advances on magnetic biosorbents and their applications for water treatment. In Environmental Chemistry Letters (Vol. 18, Issue 1). https://doi.org/10.1007/s10311-019-00931-8
Soleimani, K., Tehrani, A. D. D., & Adeli, M. (2018). Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal. Ecotoxicology and Environmental Safety, 147. https://doi.org/10.1016/j.ecoenv.2017.08.021
Song, N., Xie, X., Chen, D., Li, G., Dong, H., Yu, L., & Dong, L. (2021). Tailoring nanofiltration membrane with three-dimensional turing flower protuberances for water purification. Journal of Membrane Science, 621. https://doi.org/10.1016/j.memsci.2020.118985
Soroko, I., Bhole, Y., & Livingston, A. G. (2011). Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chemistry, 13(1). https://doi.org/10.1039/c0gc00155d
Tian, J., Zhao, X., Gao, S., Wang, X., & Zhang, R. (2021). Progress in Research and Application of Nanofiltration (NF) Technology for Brackish Water Treatment. Membranes, 11(9), 662. https://doi.org/10.3390/membranes11090662
Van Lente, H., & Arie, R. (1998). The rise of membrane technology: From rhetorics to social reality. Social Studies of Science, 28(2). https://doi.org/10.1177/030631298028002002
Vargas-Figueroa, C., Pino-Soto, L., Beratto-Ramos, A., Rivas, B. L., Tapiero, Y., Palacio, D. A., Melendrez, M. F., & Borquez, R. (2023). Surface Modification of Nanofiltration Membranes by Interpenetrating Polymer Networks and Their Evaluation in Water Desalination. ACS Applied Polymer Materials, 5(7). https://doi.org/10.1021/acsapm.3c00501
Vargas-Figueroa, C., Pino-Soto, L., Beratto-Ramos, A., Tapiero, Y., Rivas, B. L., Berrio, M. E., Melendrez, M. F., & Bórquez, R. M. (2023). In-Situ Modification of Nanofiltration Membranes Using Carbon Nanotubes for Water Treatment. Membranes, 13(7). https://doi.org/10.3390/membranes13070616
Voicu, S. I., & Thakur, V. K. (2022). Graphene-based composite membranes for nanofiltration: performances and future perspectives. Emergent Materials, 5(5), 1429–1441. https://doi.org/10.1007/s42247-021-00291-6
Wang, G., Garvey, C. J., Zhao, H., Huang, K., & Kong, L. (2017). Toward the fabrication of advanced nanofiltration membranes by controlling morphologies and mesochannel orientations of hexagonal lyotropic liquid crystals. In Membranes (Vol. 7, Issue 3). https://doi.org/10.3390/membranes7030037
Wang, J., Gao, X., Yu, H., Wang, Q., Ma, Z., Li, Z., Zhang, Y., & Gao, C. (2019). Accessing of graphene oxide (GO) nanofiltration membranes for microbial and fouling resistance. Separation and Purification Technology, 215. https://doi.org/10.1016/j.seppur.2019.01.018
Wang, J., Zhao, C., Wang, T., Wu, Z., Li, X., & Li, J. (2016). Graphene oxide polypiperazine-amide nanofiltration membrane for improving flux and anti-fouling in water purification. RSC Advances, 6(85). https://doi.org/10.1039/c6ra17284a
Wang, K., Wang, X., Januszewski, B., Liu, Y., Li, D., Fu, R., Elimelech, M., & Huang, X. (2022). Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships. Chemical Society Reviews, 51(2), 672–719. https://doi.org/10.1039/D0CS01599G
Wang, K., Xu, L., Li, K., Liu, L., Zhang, Y., & Wang, J. (2019). Development of polyaniline conductive membrane for electrically enhanced membrane fouling mitigation. Journal of Membrane Science, 570–571. https://doi.org/10.1016/j.memsci.2018.10.050
Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. In Chemical Engineering Journal (Vol. 156, Issue 1). https://doi.org/10.1016/j.cej.2009.10.029
Wang, Z., He, F., Guo, J., Peng, S., Cheng, X. Q., Zhang, Y., Drioli, E., Figoli, A., Li, Y., & Shao, L. (2020). The stability of a graphene oxide (GO) nanofiltration (NF) membrane in an aqueous environment: progress and challenges. Materials Advances, 1(4), 554–568. https://doi.org/10.1039/D0MA00191K
Wang, Z., Xu, C., Fu, Q., & Nair, S. (2022). Transport properties of graphene oxide nanofiltration membranes: Electrokinetic modeling and experimental validation. AIChE Journal, 68(11). https://doi.org/10.1002/aic.17865
Wei, X., Huang, J., Cao, S., Chen, Y., Yang, R., Wang, Z., Zhou, Q., Chen, J., & Pan, B. (2021). Preparation of graphene oxide/polyamide composite nanofiltration membranes for enhancing stability and separation efficiency. Journal of Applied Polymer Science, 138(40). https://doi.org/10.1002/app.50902
Xing, Z., Ng, Y. H., Tay, S. W., Oon, R. P. H., & Hong, L. (2017). Shaping nanofiltration channels in a carbonaceous membrane: Via controlling the pyrolysis atmosphere. Physical Chemistry Chemical Physics, 19(32). https://doi.org/10.1039/c7cp03973e
Xu, G. R., Xu, J. M., Feng, H. J., Zhao, H. L., & Wu, S. B. (2017). Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review. In Desalination (Vol. 417). https://doi.org/10.1016/j.desal.2017.05.011
Yang, K., Huang, L. jun, Wang, Y. xin, Du, Y. chen, Tang, J. guo, Wang, Y., Cheng, M. meng, Zhang, Y., Kipper, M. J., Belfiore, L. A., & Wickramasinghe, S. R. (2019). Graphene oxide/nanometal composite membranes for nanofiltration: synthesis, mass transport mechanism, and applications. New Journal of Chemistry, 43(7). https://doi.org/10.1039/c8nj06045b
Yang, L., Xiao, X., Shen, S., Lama, J., Hu, M., Jia, F., Han, Z., Qu, H., Huang, L., Wang, Y., Wang, T., Ye, Z., Zhu, Z., Tang, J., & Chen, J. (2022). Recent Advances in Graphene Oxide Membranes for Nanofiltration. ACS Applied Nano Materials, 5(3), 3121–3145. https://doi.org/10.1021/acsanm.1c04469
Yang, W., Xu, H., Chen, W., Shen, Z., Ding, M., Lin, T., Tao, H., Kong, Q., Yang, G., & Xie, Z. (2020). A polyamide membrane with tubular crumples incorporating carboxylated single-walled carbon nanotubes for high water flux. Desalination, 479. https://doi.org/10.1016/j.desal.2020.114330
Yang, Y., Yang, X., Liang, L., Gao, Y., Cheng, H., Li, X., Zou, M., Cao, A., Ma, R., Yuan, Q., & Duan, X. (2019). Large-area graphene-nanomesh/ carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 364(6445). https://doi.org/10.1126/science.aau5321
Yang, Z., Wu, C., & Tang, C. Y. (2023). Making waves: Why do we need ultra-permeable nanofiltration membranes for water treatment? Water Research X, 19. https://doi.org/10.1016/j.wroa.2023.100172
Yao, A., Hua, D., Gao, Z. F., Pan, J., Ibrahim, A. R., Zheng, D., Hong, Y., Liu, Y., & Zhan, G. (2022). Fabrication of organic solvent nanofiltration membrane using commercial PVDF substrate via interfacial polymerization on top of metal-organic frameworks interlayer. Journal of Membrane Science, 652. https://doi.org/10.1016/j.memsci.2022.120465
Yao, Y., Zhang, P., Jiang, C., DuChanois, R. M., Zhang, X., & Elimelech, M. (2021). High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nature Sustainability, 4(2). https://doi.org/10.1038/s41893-020-00619-w
Yi, X., Sun, F., Han, Z., Han, F., He, J., Ou, M., Gu, J., & Xu, X. (2018). Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotoxicology and Environmental Safety, 158. https://doi.org/10.1016/j.ecoenv.2018.04.039
Yu, H., Xiao, G., He, Y., Fan, Y., Mei, X., Li, H., Chen, G., Ma, J., & Ou, J. Z. (2021). The intercalation of nanoscale lattices into micro-sized graphene oxide sheets for enhancing pressure-driven desalination performances. Desalination, 500. https://doi.org/10.1016/j.desal.2020.114868
Yuan, Y., Gao, X., Wei, Y., Wang, X., Wang, J., Zhang, Y., & Gao, C. (2017). Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes. Desalination, 405. https://doi.org/10.1016/j.desal.2016.11.024
Zaman, N. K., Rohani, R., Mohammad, A. W., & Isloor, A. M. (2018). Polyimide-graphene oxide nanofiltration membrane: Characterizations and application in enhanced high concentration salt removal. Chemical Engineering Science, 177. https://doi.org/10.1016/j.ces.2017.11.034
Zhang, C., Wei, K., Zhang, W., Bai, Y., Sun, Y., & Gu, J. (2017). Graphene Oxide Quantum Dots Incorporated into a Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration. ACS Applied Materials & Interfaces, 9(12), 11082–11094. https://doi.org/10.1021/acsami.6b12826
Zhang, H., He, Q., Luo, J., Wan, Y., & Darling, S. B. (2020). Sharpening Nanofiltration: Strategies for Enhanced Membrane Selectivity. ACS Applied Materials and Interfaces, 12(36). https://doi.org/10.1021/acsami.0c11136
Zhang, L., Wang, J., Zhang, Y., Zhu, J., Yang, J., Wang, J., Zhang, Y., & Wang, Y. (2022). Leaf-veins-inspired nickel phosphate nanotubes-reduced graphene oxide composite membranes for ultrafast organic solvent nanofiltration. Journal of Membrane Science, 649. https://doi.org/10.1016/j.memsci.2022.120401
Zhang, P., Wang, Y., Li, P., Luo, X., Feng, J., Kong, H., Li, T., Wang, W., Duan, X., Liu, Y., & Li, M. (2022). Improving stability and separation performance of graphene oxide/graphene nanofiltration membranes by adjusting the laminated regularity of stacking-sheets. Science of the Total Environment, 827. https://doi.org/10.1016/j.scitotenv.2022.154175
Zhang, Q., Chen, S., Fan, X., Zhang, H., Yu, H., & Quan, X. (2018). A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving. Applied Catalysis B: Environmental, 224. https://doi.org/10.1016/j.apcatb.2017.10.016
Zhang, R., Su, Y., Zhao, X., Li, Y., Zhao, J., & Jiang, Z. (2014). A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). Journal of Membrane Science, 470. https://doi.org/10.1016/j.memsci.2014.07.006
Zhang, W., Xu, H., Xie, F., Ma, X., Niu, B., Chen, M., Zhang, H., Zhang, Y., & Long, D. (2022). General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28180-4
Zhao, G., Hu, R., Zhao, X., He, Y., & Zhu, H. (2019). High flux nanofiltration membranes prepared with a graphene oxide homo-structure. Journal of Membrane Science, 585. https://doi.org/10.1016/j.memsci.2019.05.028
Zhao, J., Ren, W., & Cheng, H. M. (2012). Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. Journal of Materials Chemistry, 22(38). https://doi.org/10.1039/c2jm34128j
Zhao, Y., Tong, T., Wang, X., Lin, S., Reid, E. M., & Chen, Y. (2021). Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review. Environmental Science & Technology, 55(3), 1359–1376. https://doi.org/10.1021/acs.est.0c04593
Zhao, G., Sun, J., Yu, H., Tang, G., Pan, G., Zhang, Y., Liu, Y., & Wu, C. (2024). Scalable nanofiltration membranes with sharpened pore distribution and enhanced negativity for mono/divalent anion separation. Separation and Purification Technology, 341, 126971. https://doi.org/10.1016/j.seppur.2024.126971
Zheng, K., Li, S., Chen, Z., Chen, Y., Hong, Y., & Lan, W. (2021). Highly stable graphene oxide composite nanofiltration membrane. Nanoscale, 13(22). https://doi.org/10.1039/d1nr01823j
Zheng, Y., Cheng, B., You, W., Yu, J., & Ho, W. (2019). 3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to Congo red, methyl orange and Cr(VI) ions. Journal of Hazardous Materials, 369. https://doi.org/10.1016/j.jhazmat.2019.02.013
Zhu, X., Zhang, X., Li, J., Luo, X., Xu, D., Wu, D., Wang, W., Cheng, X., Li, G., & Liang, H. (2021). Crumple-textured polyamide membranes via MXene nanosheet-regulated interfacial polymerization for enhanced nanofiltration performance. Journal of Membrane Science, 635. https://doi.org/10.1016/j.memsci.2021.119536
Zhu, Y., Xie, W., Gao, S., Zhang, F., Zhang, W., Liu, Z., & Jin, J. (2016). Single-Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for High-Flux and High-Rejection Desalination. Small, 12(36). https://doi.org/10.1002/smll.201601253
Zhu, X., Sun, Z., Tan, F., Zhu, J., Chen, F., Xu, S., Wu, D., Xu, D., Liang, H., & Cheng, X. (2024). Xylitol-based polyester loose nanofiltration membranes with outstanding water permeance and efficient dye desalination performance. Separation and Purification Technology, 334, 126048. https://doi.org/10.1016/j.seppur.2023.126048