مقایسه عملکرد سیمان و اسمکتیت در قابلیت پالایش آلاینده فلز سنگین سرب از خاک
محورهای موضوعی : فلزات سنگینامیررضا گودرزی 1 * , حمیدرضا اکبری 2
1 - دانشیار، گروه عمران، دانشکده مهندسی، دانشگاه آزاد اسلامی واحد همدان، همدان، ایران.
2 - دانش آموخته کارشناسی ارشد عمران، گروه عمران، دانشکده مهندسی، دانشگاه آزاد اسلامی واحد همدان، همدان، ایران.
کلید واژه: فلز سنگین سرب, رفع آلودگی از خاک, اسمکتیت, سیمان, بهبود خصوصیات مهندسی,
چکیده مقاله :
زمینه و هدف: انباشتگی تدریجی مواد سمّی در خاک می تواند مخاطرات بهداشتی گسترده ای را ایجاد نماید. لذا، هدف از مطالعه حاضر ارزیابی توانایی سیمان در رفع آلودگی فلزات سنگین از خاک و مقایسه نتایج آن با روش جذب فیزیکی است. روش بررسی: در شرایط کنترل شده آزمایشگاهی، ابتدا خاک کائولینیت با محلول های حاوی غلظت صفر تا 1 مولار نیترات سرب در نسبت 1به 10، آلوده شد. در ادامه با اضافه کردن درصدهای مختلف سیمان و اسمکتیت به هر نمونه و با انجام مجموعه ای از آزمایش های مختلف، تأثیر نوع ماده جاذب در فرآیند حذف و یا کاهش دسترسی زیستی فلزات سنگین از خاک، تحلیل گردید. یافتهها: در غلظت های کم آلودگی، تأثیر سیمان و اسمکتیتدر فرآیند پالایش خاک تقریباً یکسان می باشد. با افزایش غلظت آلاینده، قابلیت نگهداشت آلودگی در حضور جاذب فیزیکی مختل می شود. برخلاف محدودیت کاربرد اسمکتیت، مشخص شد سیمان از توانایی زیادی در جذب سرب برخوردار است؛ به طوری که در مقادیر یکسان ماده جاذب و با افزایش غلظت آلاینده، میزان کاهش دسترسی زیستی آلودگی در حضور سیمان به طور متوسط تا 15 برابر اسمکتیت افزایش می یابد. همچنین جامدشدگی و اتصال ذرات در نمونه های حاوی سیمان، ضمن بهبود خصوصیات مهندسی مصالح باعث کاهش شدید قابلیت آبشویی نسبت به روش جذب فیزیکی می گردد. نتیجهگیری: استفاده از روش جذب فیزیکی برای پالایش خاک (خصوصاً در غلظت های زیاد آلاینده) به هیچ وجه توصیه نمی شود. در مقایسه با عملکرد ضعیف جاذب فیزیکی اسمکتیت، استفاده از سیمان به دلیل ترکیب توأم سازوکار تثبیت و جامدسازی روشی بسیار موثر برای رفع آلودگی از خاک است؛ به گونه ای که در شرایط نگهداری مناسب و با رعایت حداقل ضوابط EPA، افزودن حدود 1/0 درصد سیمان به ازای هر سانتی مول بر کیلوگرم غلظت آلودگی، سبب پاکسازی امن خاک خواهد شد.
Background and Objective: The continuous accumulation of toxic materials such as heavy metals in soil due to interaction with industrial and domestic wastes has contributed to an extensive health hazards. Therefore, the aims of this study are to evaluate the ability of cement (as a chemical adsorbent) in remediation of contaminated soil and to compre the obtained results by the physical adsorption method through the addition of active smectite clay mineral. Method: To achieve the mentioned objectives, kaolinite soil in the laboratory conditions was contaminated with solutions containing 0 to 1 M concentration of Pb (NO3)2 in 1:10 ratio. Adding different percentages of cement and smectite to each sample, and after equilibrating, changes in pH and concentrations were determined. Tests of hydraulic conductivity (permeability), unconfined compression strength (UCS), toxicity characteristic leaching procedure (TCLP) and SEM were also performed to evaluate the impact of adsorbent type on reduction of the of pollution transportation potential. Findings: The results indicate that at low concentrations of contaminants (up to 50 cmol/kg.soil), the type of absorbent does not have much influence on the heavy metals removal from contaminated soils. It was found that with the increase of the pollutant concentration and due to the buffering capacity reduction and the restructed clay mineral, the possibility of soil remediation through the physical absorption method is greatly decreased. Unlike the smectite limitation encountering with contaminated soil containing the heavy metals, the cement has a high adsorption capacity to adsorbe heavy metals. In the same content of adsorbent and with the increase of the Pb concentration, the amount of its reduction in the presence of cement is 15 times more than what observed in the presence of smectite. In addition, it can be seen that the particles solidification in the samples containing cement improves the engineering properties of materials, causes to trap the pollutants within the soil mass and consequently reduces the leaching and emission capability of pollutants as compared to the physical attraction method. Conclusion: According to the results, using the physical adsorption to remove the heavy metals from contaminated soils (particularly at high concentrations of contaminant) is not recommended. Unlike the smectite limitation encountering with contaminated soil, application of cement is very effective to remove contaminants from the soil due to the combination of two mechanisms of stabilization and solidification. In appropriate remediation condition and with respect to EPA criteria, application of 0.1% of cement per 1 cmol/kg.soil contamination leads to safe remediation of the heavy metals from in contaminated soils.
1- Li, Z., Ma, Z., Kuijp, T.J.V., Zengwei Yuana, Z., Huang, L., 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, Vol. 468-469, pp. 843-853.
2- Huang, Z., Pan, X.D. Wu, P.G. Han, J.L., Chen, Q., 2014. Heavy metals in vegetables and the health risk to population in Zhejiang. China, Food Control, Vol. 36, pp. 248-252.
3- EPA, United States Environmental Protection Agency, 2010. Municipal solid waste generation, recycling and disposal in the United States: Facts and figures.
4- Voglar, G.E., Lestan, D., 2013. Equilibrium leaching of toxic elements from cement stabilized soil. Journal of Hazardous Materials, Vol. 246-247, pp. 18-25.
5- Hekal, E.E., Hegazi, W.S., Kishar, E.A., Mohamed, M.R., 2011. Solidification/stabilization of Ni (II) by various cement pastes. Construction and Building Materials, Vol. 25, pp 109-114.
6- Choi, W.H., Lee, S.R., Park, J.Y., 2009. Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Management, Vol. 29, pp. 1766-1771.
7- Zhu, Z., Gao, C., Wu, Y., Sun, L, Huang, X, Ran, W, Shen, Q., 2013. Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite. Journal of Bioresource Technology, Vol. 147, pp. 378-386.
8- Fernández-Nava, Y., Ulmanu, M., Anger, I., Marañón, E., Castrillón, L., 2011. Use of granular bentonite in the removal of Mercury (II), Cadmium (II) and Lead (II) from aqueous solutions. Water Air Soil Pollut, Vol. 215, pp. 239-249.
9- Addy, M., Losey, B., Mohseni, R., Zlotnikov, E., Vasiliev, A., 2012. Adsorption of heavy metal ions on mesoporous silica-modified montmorillonite containing a grafted chelate ligand. Applied Clay Science, Vol. 59-60, pp. 115-120.
10- Zha, F.S. Xu, L. Cui, K.R., 2012. Strength characteristics of heavy metal contaminated soils stabilized/solidified by cement. Rock and Soil Mechanics, Vol. 33, pp. 652-664.
11- Cui, Y. Du, X. Weng, L. Willem, H. and Riemsdijk, V., 2010. Assessment of In-Situ immobilization of lead (Pb) and arsenic (As) in contaminated soils with phosphate and iron: solubility and bioaccessibility. Water Air Soil Pollut, Vol. 213, pp. 95-104.
12- Kogbara, R.B., Al-Tabbaa, A., 2011. Mechanical and leaching behaviour of slag-cement and lime-ctivated slag stabilised/solidified contaminated soil. Science of the Total Environment, Vol. 409, pp. 2325-2335.
13- Salem, A., Akbari Sene, R., 2011. Removal of lead from solution by combination of natural zeolite-kaolin-bentonite as a new low-cost adsorbent. Chemical Engineering Journal, Vol. 174, pp. 619-628.
14- Ouhadi, V.R., Yong, R.N., Rafiee, F., Goodarzi, A.R., 2011. Impact of carbonate and heavy metals on microstructural variations of clayey soils. Applied Clay Science, Vol. 52, pp. 228-234.
15- Tantawy, M.A. El-Roudi, A.M. Salem, A.A. 2012. Immobilization of Cr (VI) in bagasse ash blended cement pastes. Construction and Building Materials, Vol. 30, pp. 218-223.
16- Wei, M.L. Du, Y.J. Zhang, F., 2011. Fundamental properties of strength and deformation of cement solidified/stabilized zinc contaminated soils. Rock and Soil Mechanics. Vol 32, pp 306-312.
17- Moon, D.H., Wazne, M., Yoon, I.H., Grubb, D.G., 2008. Assessment of cement kiln dust (CKD) for stabilization/solidification of arsenic contaminated soils. Journal of Hazardous Materials, Vol. 159, pp. 512-518.
18- Antemir, A., Hills, C.D., Carey, P.J., Gardner, K.H, Bates, E.R., Crumbie, A.K., 2010. Long-term performance of aged waste forms treated by stabilization/solidification. Journal of Hazardous Materials, Vol., 181, pp. 65-73.
19- ASTM, 2006. Annual Book of ASTM Standard. American Society for Testing and Materials. Philadelphia; 4.08.
20- EPA, 1983. Process design manual: land application of municipal sludge, Res. Lab. EPA-625/1-83-016.
21- EPA 1311, 2003. Toxicity Characteristic Leaching Procedure, Test Method for Evaluation of Solid Wastes. Physical, Chemical Methods, SW846.
22- Elliott, H.A., Liberati, M.R., and Huang, C.P., 1986. Competitive adsorption of heavy metals by soils. J. Environ. Qual., Vol. 15, pp. 214-219.
23- Yong, R.N., Ouhadi, V.R., Goodarzi, A.R., 2009. Effect of Cu2+ Ions and Buffering capacity on Smectite Microstructure and Performance. Journal of Geotechnical and Geoenvironmental Engineering ASCE, Vol. 135, pp. 1981-1985.
24- Malviya, R., Chaudhary, R., 2006. Factors affecting hazardous waste solidification/Stabilization: Review. J.Hazardous Material, Vol. 137, pp. 267-276.
25- Sánchez-Jiménez, N., Gismera, M.J., Sevilla, M.T., 2012. Clayey materials as geologic barrier in urban landfills: Comprehensive study of the interaction of selected quarry materials with heavy metals. Applied Clay Science, Vol. 56, pp. 23-29.
26- Malamis, S., Katsou, E., 2013. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, Vol. 252-253, pp. 428-461.