بررسی حذف فتو کاتالیستی متیل اورانژ بوسیله ی نانو ذرات تیتانیوم دی اکسید اصلاح شده با نقره و کبالت
محورهای موضوعی :
آب و محیط زیست
نسیم ضیایی فر
1
*
,
صابر خدایی
2
1 - استادیار گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد مراغه، ایران. *(مسوول مکاتبات)
2 - استادیار گروه آمار، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد مراغه، ایران.
تاریخ دریافت : 1400/09/02
تاریخ پذیرش : 1401/09/29
تاریخ انتشار : 1401/10/01
کلید واژه:
نقره و کبالت,
حذف آلاینده,
متیل اورانژ,
نانوذرات تیتانیوم دی اکسید اصلاح شده,
چکیده مقاله :
زمینه و هدف: در بررسی فعالیت فتو کاتالیستی نانو ذرات تیتانیوم دی اکسید اصلاح شده به منظور حذف آلاینده متیل اورانژ، پارامترهایی مانند مقدار غلظت آلاینده، مقدار فوتوکاتالیست،pH محلول و دمای کلسیناسیون مورد بررسی قرار گرفت.
روش بررسی: در این تحقیق، نانو ذرات Ag-Co/TiO2 به روش سل ژل سنتز گردید و بوسیله تکنیک های TEM، SEM، XRD و EDX مشخصه یابی شد. نتایج بررسی های پراش اشعه ایکس نشان داد که نشاندن همزمان نقره و کبالت تاثیری بر روی الگوی کریستالی تیتانیوم دی اکسید ندارد. تشکیل نانوذرات Ag-Co/TiO2 و اندازه ی تقریبی آنها با استفاده از طیف XRD تأیید و در حدود nm 270 می باشد. تصاویر TEM نیز با اندازه ی ذرات حدود nm 300 نتایج حاصله از XRD را تأیید می کند. مورفولوژی و خلوص این نانوذرات سنتز شده از طریق تصاویر SEM و EDX مورد بررسی قرار گرفت .نتایج آنالیز EDX نشان داد که نانو ذرات Ag-Co/TiO2 تهیه شده به روش سل- ژل، پیکی مربوط به ناخالصی در نمونه ندارد. فعالیت فوتوکاتالیزوری نانو ذرات Ag-Co/TiO2 تحت تابش نور مرئی در حذف آلاینده متیل اورائژ مورد ارزیابی قرار گرفت.
یافته ها: بررسی نتایج بیان کننده این است که میزان حذف آلاینده ها با استفاده از TiO2 سنتزی اصلاح شده با کبالت و نقره بیشتر از TiO2 دوپینگ شده با تک فلز می باشد. بیشترین درصد حذف متیل اورائژ توسط Ag-Co/TiO2 5/99% در مدت 75 دقیقه می باشد.
بحث و نتیجه گیری: غلظت های بهینه برای نقره و کبالت برای نانوذره اصلاح شده Ag-Co/TiO2 9/0 و 3/0 درصد مولی به ترتیب می باشند.
چکیده انگلیسی:
Background and Objective: In order to investigate the photocatalytic activity of modified titanium dioxide nanoparticles in order to remove methyl orange contaminants, parameters such as the amount of contaminant concentration, the amount of photocatalytic, the pH of the solution and the calcination temperature were investigated.
Material and Methodology: In this study, Ag-Co / TiO2 nanoparticles were synthesized by sol-gel method and characterized by TEM, SEM, XRD and EDX techniques. The results of XRD diffraction studies showed that the simultaneous deposition of silver and cobalt had no effect on the crystalline pattern of titanium dioxide. The formation of Ag-Co / TiO2 nanoparticles and their approximate size were confirmed using the XRD spectrum and is about 270 nm. TEM images with a particle size of about 300 nm also confirm the XRD results. The morphology and purity of these synthesized nanoparticles were evaluated through SEM and EDX images. The results of EDX analysis showed that Ag-Co / TiO2 nanoparticles prepared by sol-gel method did not have a peak of impurity in the sample. The photocatalytic activity of Ag-Co / TiO2 nanoparticles under visible light irradiation was evaluated in the removal of methyl orange contaminants.
Findings: Co doped TiO2 nanoparticles by Ag and Co were shown to have highest activity as compared with the Ag/TiO2 , Co /TiO2 and pure TiO2 nanoparticles. The highest percentage of methyl orange removal by Ag-Co / TiO2 is 99.5% in 75 minutes.
Discussion and Conclusion: The optimum contents of silver and Cobalt for the preparation of co-doped Ag,Co/TiO2 nanoparticles were 0.9 and 0.3 at mol%, respectively
منابع و مأخذ:
E.H., 2004, polymer chemistry and Hydrogel systems, Journal of Physics: Conference Series, Vol. 3, pp. 22-28.
DSL., Monteneiro RTR., 2001. Decolorization of textile indigo dye by ligninolytic fungi. J biotechnol, vol. 89, pp.141-145.
J.M., 1999. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, vol. 53, pp. 115-129.
Klavarioti., Mantzavinos. D., Kassinos. D., 2009. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int, vol. 35, pp. 402-417.
Ahmed. P ., Rasul. S., Martens.M.G., Brown. W.N., Hashib. R., 2010. Heterogeneous photocatalytic degradation of phenols in wastewater. a review on current status and developments, Desalination, vol. 261 (1 - 2), pp. 3-8.
A., Rao. T.N., Tryk. D.A., 2000. Titanium dioxide photocatalysis. J. Photochem. Photobiol, vol. 1, pp. 1-21.
L.G., Kottam. N., Murthy. B.N., Kummar.S.G., 2010. Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/Solar light. J. Mol. Catal. A-Chem, vol. 328, pp. 44-52.
U.G., Hameed. B.H., 2010. The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl. Catal, vol. 375, pp. 1–11.
E.D., Borse. P.H., Jang. J.S., 2008. Hydrothermal synthesis of Cr and Fe co-doped TiO2 nanoparticle photocatalyst J. Ceram. Process Res. Vol. 9, pp. 250–253.
J., Zhang. Z., Yang. L., 2011. The Degradation of Reactive Black Wastewater by Fe/Cu Co-doped TiO2. J. International Journal of Chemistry , vol. 3, pp. 87-92
Wang, W., Zhang. J., Chen. F., Anpo. D., 2008. Preparation and photocatalytiy roperties of Fe3+-doped Ag@TiO2 core–shell nanoparticle .J , Colloid and Interface Science, vol. 323, pp. 182-186.
P., Pakshirajan. K., Saha. P., 2009. Degradation of phenol by TiO2-based heterogeneous photocatalysts in presence of sunlight. Journal of Hydroenvironment Research, vol. 3, pp. 45–50.
H. Y., Chen. D .H., 2009.Fabrication and photocatalytic activities in visible and UV light regions of Ag@ TiO2 and NiAg@ TiO2. nanoparticles Nanotechnology, vol. 20, No. 10, 105704.
N., et al ., 2020. Evaluation of optimization removal of methyl orange from aqueous solutions with Ag, Co/TiO2 nano-particles by experimental design. J. Env. Sci. Tech, Vol. 22, No.5, pp. 303-311. (In Persian)
M.A., Eskandarloo. H., 2013. Silver and copper co- impregnated on to TiO2-P25 nanoparticles and its photocatalytic activity. Chemical Engineering Journal, vol. 228, pp. 1207–1213.
N., Oladegaragozy. A., Jafarzadeh. N., 2006. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. J. Hazard. Mater, Vol. 129, pp. 116-122.
VK., et al., 2013. Remidiation and recovery of methyl orange from aqueous solution onto acrylic and grafted ficus caricnd fiber. Isotherms kinetics and thermodynamics. Journal of Molecular Liquids. Vol. 177, pp. 325-34.
M.B., Dhabbe R.S., Kadam. A.N., Garadkar. K.M., 2014. Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. J. Ceramics International, vol. 4, pp. 5489-5496.
_||_
E.H., 2004, polymer chemistry and Hydrogel systems, Journal of Physics: Conference Series, Vol. 3, pp. 22-28.
DSL., Monteneiro RTR., 2001. Decolorization of textile indigo dye by ligninolytic fungi. J biotechnol, vol. 89, pp.141-145.
J.M., 1999. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, vol. 53, pp. 115-129.
Klavarioti., Mantzavinos. D., Kassinos. D., 2009. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int, vol. 35, pp. 402-417.
Ahmed. P ., Rasul. S., Martens.M.G., Brown. W.N., Hashib. R., 2010. Heterogeneous photocatalytic degradation of phenols in wastewater. a review on current status and developments, Desalination, vol. 261 (1 - 2), pp. 3-8.
A., Rao. T.N., Tryk. D.A., 2000. Titanium dioxide photocatalysis. J. Photochem. Photobiol, vol. 1, pp. 1-21.
L.G., Kottam. N., Murthy. B.N., Kummar.S.G., 2010. Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/Solar light. J. Mol. Catal. A-Chem, vol. 328, pp. 44-52.
U.G., Hameed. B.H., 2010. The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl. Catal, vol. 375, pp. 1–11.
E.D., Borse. P.H., Jang. J.S., 2008. Hydrothermal synthesis of Cr and Fe co-doped TiO2 nanoparticle photocatalyst J. Ceram. Process Res. Vol. 9, pp. 250–253.
J., Zhang. Z., Yang. L., 2011. The Degradation of Reactive Black Wastewater by Fe/Cu Co-doped TiO2. J. International Journal of Chemistry , vol. 3, pp. 87-92
Wang, W., Zhang. J., Chen. F., Anpo. D., 2008. Preparation and photocatalytiy roperties of Fe3+-doped Ag@TiO2 core–shell nanoparticle .J , Colloid and Interface Science, vol. 323, pp. 182-186.
P., Pakshirajan. K., Saha. P., 2009. Degradation of phenol by TiO2-based heterogeneous photocatalysts in presence of sunlight. Journal of Hydroenvironment Research, vol. 3, pp. 45–50.
H. Y., Chen. D .H., 2009.Fabrication and photocatalytic activities in visible and UV light regions of Ag@ TiO2 and NiAg@ TiO2. nanoparticles Nanotechnology, vol. 20, No. 10, 105704.
N., et al ., 2020. Evaluation of optimization removal of methyl orange from aqueous solutions with Ag, Co/TiO2 nano-particles by experimental design. J. Env. Sci. Tech, Vol. 22, No.5, pp. 303-311. (In Persian)
M.A., Eskandarloo. H., 2013. Silver and copper co- impregnated on to TiO2-P25 nanoparticles and its photocatalytic activity. Chemical Engineering Journal, vol. 228, pp. 1207–1213.
N., Oladegaragozy. A., Jafarzadeh. N., 2006. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. J. Hazard. Mater, Vol. 129, pp. 116-122.
VK., et al., 2013. Remidiation and recovery of methyl orange from aqueous solution onto acrylic and grafted ficus caricnd fiber. Isotherms kinetics and thermodynamics. Journal of Molecular Liquids. Vol. 177, pp. 325-34.
M.B., Dhabbe R.S., Kadam. A.N., Garadkar. K.M., 2014. Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. J. Ceramics International, vol. 4, pp. 5489-5496.