باکتریهای محرک رشد گیاه در تلفیق با فناوری گیاهپالایی: رویکردی پایدار برای اصلاح زمینهای حاشیهای
محورهای موضوعی : راه حل های موثر و قابل توسعه برای کنترل و حذف آلودگی های محیطی
1 - گروه کشاورزی، واحد پارس آباد مغان، دانشگاه آزاد اسلامی، پارس آباد مغان، ایران
کلید واژه: آلایندههای آلی, باکتریهای محرک رشد گیاه, تجزیۀ زیستی, زمین حاشیهای, گیاهپالایی, فلزات سنگین,
چکیده مقاله :
زمینهایی که برای کشاورزی یا صنعت کاربرد کم یا بدون استفاده هستند، زمین حاشیهای محسوب میشوند. این نوع زمینها اغلب در حاشیۀ بیابانها یا سایر مناطق خشک یافت میشوند. میزان زمینی که میتواند برای کشاورزی استفاده شود همچنان با افزایش بیابانزایی که ناشی از تغییرات آب و هوایی و بدتر شدن مناطق حاشیهای کشاورزی است، محدود میشود. گیاهان و میکروارگانیسمهای مرتبط برای اصلاح و افزایش کیفیت خاک زمینهای حاشیهای استفاده میشوند. آنها یک راه حل کمهزینه و معمولاً طولانی مدت برای بازگرداندن حاصلخیزی خاک هستند. در میان فرآیندهای مختلف گیاهپالایی (مانند تجزیۀ گیاهی، استخراج گیاهی، تثبیت گیاهی، تبخیر گیاهی، فیلتراسیون گیاهی، تحریک گیاهی و نمکزدایی گیاهی)، بهکارگیری یک مکانیسم خاص توسط وضعیت خاک، وجود و غلظت آلایندهها و گونههای گیاهی درگیر تعیین میشود. این بررسی بر روی گیاهان مهم مورد استفاده برای گیاهپالایی، و همچنین چالشهای رشد گیاه و قابلیت گیاهپالایی با تأکید بر مزایا و محدودیتهای رشد گیاه در اراضی حاشیهای متمرکز است. باکتریهای محرک رشد گیاه (PGPB) با ترشح انواع متابولیتها و هورمونها، از طریق تثبیت نیتروژن و با افزایش فراهمی زیستی سایر مواد مغذی از طریق حل شدن مواد معدنی، رشد گیاه را تقویت کرده و زیستپالایی خاک را تقویت میکنند. این بررسی همچنین بر نقش باکتریهای محرک رشد تحت تنشهای غیرزیستی مختلف، از جمله زمینهای آلوده به فلزات سنگین، محیطهای با شوری بالا و آلایندههای آلی تأکید میکند. نتایج تحقیقات نشان میدهد، بهبود حاصلخیزی خاک اراضی حاشیهای با استفاده از باکتریهای محرک رشد منجر به احیای کشاورزی عمومی و همچنین احیای پوشش گیاهی بومی خواهد شد.
Land with little to no utility for agriculture or industry is considered marginal land, frequently found at the edges of deserts or other arid regions. The area available for agriculture continues to be constrained by increasing desertification driven by climate change and the degradation of agriculturally marginal areas. Plants and their associated microorganisms can be used to remediate and enhance the soil quality of marginal land. Among various phytoremediation processes (viz., phytodegradation, phytoextraction, phytostabilization, phytovolatilization, phytofiltration, phytostimulation, and phytodesalination), the choice of mechanism is determined by soil condition, the presence and concentration of contaminants, and the plant species involved. These approaches represent low-cost, often long-term solutions for restoring soil fertility. This review focuses on key plant species used for phytoremediation, the challenges to plant growth and phytoremediation capacity, and the advantages and limits of plant growth in marginal-land soils. Plant growth promoting bacteria (PGPB) boost plant development and promote soil bioremediation by secreting a variety of metabolites and hormones, by fixing nitrogen, and by increasing the bioavailability of other nutrients through mineral solubilization. This review also emphasizes the role of PGPB under different abiotic stresses, including heavy-metal-contaminated land, high-salinity environments, and organic contaminants. Research results show that improving soil fertility on marginal lands through this approach can facilitate the reclamation of conventional agriculture as well as the restoration of native vegetation.
[1] FAO, 2022, The state of the world’s land and water resources for food and agriculture – systems at breaking point (Rome, Italy: FAO). DOI:10.4060/cb9910en.
[2] Saleem, M.H., Ali, S., Hussain, S., Kamran, M., Chattha, M.S., Ahmad, S., Aqeel, M., Rizwan, M., Aljarba, N.H., Alkahtani, S., Abdel-Daim, M.M., 2020, Flax (Linum usitatissimum L.): A potential candidate for phytoremediation? Biological and economical points of view. Plants, 9, 496.
[3] Zgorelec, Z., Bilandzija, N., Knez, K., Galic, M., Zuzul, S., 2020, Cadmium and mercury phytostabilization from soil using Miscanthus × giganteus. Scientific Reports, 10, 6685
[4] Shah, V., Daverey, A., 2020, Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology & Innovation, 18, 100774.
[5] Jiang, C., Guan, K., Khanna, M., Chen, L., Peng, J., 2021, Assessing marginal land availability based on land use change information in the contiguous united states. Environmental Science & Technology, 55, 10794.
[6] Shahane, A.A., Shivay, Y.S., 2021, Soil health and its improvement through novel agronomic and innovative approaches. Frontiers in Agronomy, 3, 680456.
[7] Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., Patel, M., 2020, Effect of abiotic stress on crops. In: Sustainable crop production. Hasanuzzaman, M., Filho, M.C.M.T., Fujita, M., Nogueira, T.A.R. (Editors), IntechOpen.
[8] Yan, A., Wang, Y., Tan, S.N., Yusof, M.L.M., Ghosh, S., Chen, Z., 2020, Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 11, 359.
[9] Backer, R., Rokem, J.S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., Smith D.L., 2018, Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473.
[10] Nedjimi, B., 2021, Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3, 286.
[11] Kotoky, R., Pandey, P., 2020, Rhizosphere assisted biodegradation of benzo(a)pyrene by cadmium resistant plant-probiotic Serratia marcescens S2I7, and its genomic traits. Scientific Reports. 10, 5279
[12] Bolan, N.S., Park, J.H., Robinson, B., Naidu, R., Huh, K.Y., 2011, Chapter four - Phytostabilization: A green approach to contaminant containment. In: Advances in agronomy. Vol. 112, Sparks, D.L. (Editor), pp. 145-204.
[13] Saleem, M.H., Ali, S., Rehman, M., Hasanuzzaman, M., Rizwan, M., Irshad, S., Shafiq, F., Iqbal, M., Alharbi, B.M., Alnusaire, T.S., Qari, S.H., 2020, Jute: A potential candidate for phytoremediation of metals - a review. Plants, 9, 258.
[14] Poria, V., Singh, S., Nain, L., Singh, B., Saini, J.K., 2021, Rhizospheric microbial communities: Occurrence, distribution, and functions, In: Microbial metatranscriptomics belowground. Nath, M., Bhatt, D., Bhargava, P., Choudhary, D.K. (Editors), Springer Singapore, pp. 239–271.
[15] Kumar, M., Varma, S.K., Renju, Singh, N.K., Singh, R., 2024, General aspects/case studies on sources and bioremediation mechanisms of metal(loid)s. In: Bioremediation for sustainable environmental cleanup. Malik, A., Garg, V.K. (Editors), CRC Press.
[16] Sayyed, R.Z., Seifi, S., Patel, P.R., Shaikh, S.S., Jadhav, H.P., El Enshasy, H., 2019, Siderophore production in groundnut rhizosphere isolate, Achromobacter sp. RZS2 influenced by physicochemical factors and metal ions. Environmental Sustainability, 2, 117.
[17] Wang, M., Chen, S., Jia, X., Chen, L., 2021, Chapter 1 - concept and types of bioremediation. In: Handbook of bioremediation. Hasanuzzaman, M., Prasad M.N.V. (Editors), Academic Press.
[18] Burges, A., Alkorta, I., Epelde, L., Garbisu, C., 2018, From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation, 20, 384.
[19] Jagetiya, B., Kumar, S., 2020, Phytoremediation of lead: A Review. In: Lead in plants and the environment. Radionuclides and heavy metals in the environment. Gupta, D., Chatterjee, S., Walther, C. (Editors), Springer, pp. 171-202.
[20] Sharma, A., Sharma, Sh., Sharma, S., Kumar, A., Sharma, V., 2024, Phytoremediation: A clean and green approach for heavy metal remediation. In: Microbial applications for environmental sustainability. Karnwal, A., Mohammad Said Al-Tawaha, A.R. (Editors), Springer Singapore, pp. 257-276.
[21] Raza, R., Habib, M., Kakavand, S.N., Zahid, Z., Zahra, N., Sharif, R., Hasanuzzaman, M., 2020, Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology, 9, 177.
[22] Mehmood, T., Liu, C., Bibi, I., Ejaz, M., Ashraf, A., Haider, F.U., Riaz, U., Hussain, A., Husain, S., Shaz, M., Asghar, S., Shahid, M., Niazi, N.K., 2022, Chapter 13 - Recent developments in phosphate-assisted phytoremediation of potentially toxic metal(loid)s-contaminated soils. In: Assisted phytoremediation. Pandey, V. (Editor), Elsevier, pp. 345-370.
[23] Limmer, M., Burken, J., 2016, Phytovolatilization of organic contaminants. Environmental Science & Technology, 50, 6632.
[24] Bortoloti, G.A., Baron, D., 2022, Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environmental Advances, 8, 100204.
[25] Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R., Zhang, Z., 2016, Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111.
[26] Javed, M.T., Tanwir, K., Akram, M.S., Shahid, M., Niazi, N.K., Lindberg, S., 2019, Chapter 20 – Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: Role of plant-induced pH changes. In: Cadmium toxicity and tolerance in plants. Hasanuzzaman, M., Prasad, M.N.V., Fujita, M. (Editors), Academic Press, pp. 495-529.
[27] Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., and Asghar, H. N., 2019, Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714.
[28] Sabreena, Hassan, S., Bhat, S.A., Kumar, V., Ganai, B.A., Ameen, F., 2022, Phytoremediation of heavy metals: An indispensable contrivance in green remediation technology. Plants, 11, 1255.
[29] Sameena, P.P, Puthur, J.T., 2021, Heavy metal phytoremediation by bioenergy plants and associated tolerance mechanisms. Soil and Sediment Contamination: An International Journal, 30, 253.
[30] Egamberdieva, D., Jabborova, D., Berg, G., 2016, Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant and Soil, 405, 35.
[31] Shilev, S., 2020, Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Applied Sciences, 10, 7326.
[32] Khan, N., Bano, A., 2019, Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS ONE, 14, e0222302.
[33] Shameer, S., Prasad, T.N.V.K.V., 2018, Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation, 84, 603.
[34] Etesami, H., Emami, S., Alikhani, H.A., 2017, Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects - a review. Journal of Soil Science and Plant Nutrition, 17, 897.
[35] Sagar, A., Rai, S., Ilyas, N., Sayyed, R.Z., Al-Turki, A.I., El Enshasy, H.A., Simarmata, T., 2022, Halotolerant rhizobacteria for salinity-stress mitigation: Diversity, mechanisms and molecular approaches. Sustainability, 14, 490.
[36] Pandey, V.C., Pandey, D.N., Singh, N., 2015, Sustainable phytoremediation based on naturally colonizing and economically valuable plants. Journal of Cleaner Production, 86, 37.
[37] Ameri Siahouei, R., Zaeimdar, M., Moogouei, R., Jozi, S.A., 2020, Potential of Cyperus alternifolius, Amaranthus retroflexus, Closia cristata and Bambusa vulgaris to phytoremediate emerging contaminants and phytodesalination; Insight to floating beds technology. Caspian Journal Environmental Sciences, 18, 309.
[38] Baneshi, M.M., Rezaei Kalantary, R., Jonidi Jafari, A., Nasseri, S., Jaafarzadeh, N., Esrafili, A., 2014, Effect of bioaugmentation to enhance phytoremediation for removal of phenanthrene and pyrene from soil with Sorghum and Onobrychis sativa, Journal of Environmental Health Science and Engineering, 12, 24.
[39] Henry, H.F., Burken, J.G., Maier, R.M., Newman, L.A., Rock, S., Schnoor, J.L., Suk, W.A., 2013, Phytotechnologies - preventing exposures, improving public health. International Journal of Phytoremediation, 15, 889.
[40] Zhang, Y., Zhao, S., Liu, S., Peng, J., Zhang, H., Zhao, Q., Zheng, L., Chen, Y., Shen, Z., Xu, X., Chen, C., 2022, Enhancing the phytoremediation of heavy metals by combining hyperaccumulator and heavy metal-resistant plant growth-promoting bacteria. Frontiers in Plant Science, 13, 912350.
[41] Azizi, M., Faz, A., Zornoza, R., Martinez-Martinez, S., Acosta, J.A., 2023, Phytoremediation potential of native plant species in mine soils polluted by metal(loid)s and rare earth elements. Plants, 12, 1219.
[42] Guidi Nissim, W., Castiglione, S., Guarino, F., Pastore, M.C., Labra, M., 2023, Beyond cleansing: Ecosystem services related [43] Zhang, L., Liu, Z., Song, Y., Sui, J., Hua, X., 2024, Advances in the involvement of metals and metalloids in plant defense response to external stress. Plants, 13, 313.
to phytoremediation. Plants, 12, 1031.
[44] Skuza, L., Szućko-Kociuba, I., Filip, E., Bożek, I., 2022, Natural molecular mechanisms of plant hyperaccumulation and hypertolerance towards heavy metals. Internatioal Journal of Molecular Sciences, 23, 9335.
[45] Hasan, M.M., Uddin, M.N., Ara-Sharmeen, I., Alharby, F., Alzahrani, Y., Hakeem, K.R., Zhang, L., 2019, Assisting phytoremediation of heavy metals using chemical amendments. Plants, 8, 295.
[46] Rangel, T.S., Santana, N.A., Jacques, R.J.S., Ramos, R.F., Scheid, D.L., Koppe, E., Tabaldi, L.A., de Oliveira Silveira, A., 2023, Organic fertilization and mycorrhization increase copper phytoremediation by Canavalia ensiformis in a sandy soil. Environmental Science and Pollution Research, 30, 68271.
[47] Zhu, Y.G., Rosen, B.P., 2009, Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: From imagination to reality?. Current Opinion in Biotechnology, 20, 220.
[48] Liu, Y.-Q., Chen, Y., Li, Y.-Y., Ding, C.-Y., Li, B.-L., Han, H., Chen, Z.-J., 2024, Plant growth-promoting bacteria improve the Cd phytoremediation efficiency of soils contaminated with PE–Cd complex pollution by influencing the rhizosphere microbiome of sorghum. Journal of Hazardous Materials, 469, 134085.