بررسی اثر Avastin بر آپوپتوز سلول های همکشتی داده شده HepG2 بر هیدروژل حاوی سلول HUVEC از طریق عملکرد مسیر مولکولی P53 و تغییرات سطح گونه های اکسیژنی اکسایشگر
محورهای موضوعی :
الهام نقی موسوی قزلجه
1
,
هانیه جعفری
2
*
,
زهرا کیان مهر
3
1 - گروه زیست شناسی، دانشکده علوم و فناوری های همگرا، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
2 - گروه زیست شناسی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
3 - ﮔﺮوه بیوشیمی، دانشکده علوم زیستی، دانشگاه آزاد اسلامي، واحد تهران شمال، تهران، ايران
کلید واژه: آنتی اکسیدان, داربست هیدروژلی, سرطان, کبد, آپوپتوز,
چکیده مقاله :
کارسینوم هپاتوسلولار پنجمین سرطان شایع در سراسر جهان می باشد که با عوارض شدید همراه است. در این پژوهش، بررسی اثر داروی آواستین بر تکثیر سلولهای HepG2 از طریق فعال شدن مسیر P53 و تغییر محتوای آنتیاکسیدانی سلولهای HepG2 کشت داده شده بر داربست هیدروژلی حاوی سلولهای HUVEC انجام شد. سلولهای HepG2 بر روی داربست هیدروژلی کلاژن نوع I حاوی HUVEC کشت داده شدند و پس از تیمار با غلظتهای مختلف آواستین، زنده مانی سلولها، با استفاده از تست MTT و میزان آپوپتوز با استفاده از تکنیک فلوسایتومتری انجام شد. میزان پراکسیداسیون لیپیدی، فعالیت آنزیمی سوپراکسید دیسموتاز (SOD)، وضعیت اکسیدانی کل (TOS) و ظرفیت آنتیاکسیدانی کل (TAS) با استفاده از روش کالرومتریک و میزان پروتئین p53 با استفاده از تکنیک ایمونوسیتوشیمی انجام شد. بررسی نتایج نشان می دهد که میزان آپوپتوز در سلولهای HepG2 همکشتی شده با HUVEC-Scaffold و داروی آواستین نسبت به سایر گروهها بیشتر است. نتایج، نشان دهنده افزایش معنی دار میزان اکسیدان کل و مالون دی آلدئید و کاهش معنی دار میزان فعالیت آنزیم سوپراکسید دیسموتاز و ظرفیت آنتی اکسیدان کل در دو گروه HepG2+Scaffold-HUVEC و HepG2+Scaffold تیمار شده با داروی آواستین می باشد. داروی آواستین باعث افزایش درصد میزان p53 در سلولهای HepG2 تحت تیمار همکشتی شده با Scaffold و Scaffold-HUVEC شود. داربست هیدروژلی به عنوان یک گزینه برای شبیه سازی بهینه زندگی سلولهای سرطانی استفاده و نشان داده شد که آواستین توانایی تأثیر ضد سرطانی شایانی در این ساختارها دارد.
Hepatocellular carcinoma is the fifth most common cancer worldwide, which is associated with severe complications. In this study, the effect of Avastin drug on the proliferation of HepG2 cells was investigated through the activation of the P53 pathway and the change of the antioxidant content of HepG2 cells cultured on a hydrogel scaffold containing HUVEC cells. In this study, HepG2 cells were cultured on type I collagen hydrogel scaffolds containing HUVEC and after treatment with different concentrations of Avastin, cell viability was measured using the MTT test and the rate of apoptosis using flow cytometry. The level of lipid peroxidation, superoxide dismutase (SOD) enzyme activity, total oxidant status (TOS) and total antioxidant capacity (TAS) were measured using calorimetric method and p53 protein level was measured using immunocytochemistry technique. Examining the results shows that the rate of apoptosis in HepG2 cells co-cultured with HUVEC-Scaffold and Avastin drug is significantly higher than other groups. The results show a significant increase in the amount of total oxidant and malondialdehyde and a significant decrease in the activity of the superoxide dismutase enzyme and total antioxidant capacity in the two groups of HepG2+Scaffold-HUVEC and HepG2+Scaffold treated with Avastin. Avastin can increase the percentage of p53 in HepG2 cells co-cultured with Scaffold and Scaffold-HUVEC. In this study, hydrogel scaffold was used as an option for optimal simulation of the life of cancer cells and it was shown that the drug Avastin has the ability to have a good anti-cancer effect in these structures.
1. 1Ogunwobi OO, Harricharran T, Huaman J, Galuza A, Odumuwagun O, Tan Y, et al. Mechanisms of hepatocellular carcinoma progression. World journal of gastroenterology. 2019;25(19):2279.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424.
3. Bahman AA, Abaza MSI, Khoushiash SI, Al‑Attiyah RJ. Sequence‑dependent effect of sorafenib in combination with natural phenolic compounds on hepatic cancer cells and the possible mechanism of action. International journal of molecular medicine. 2018;42(3):1695-715.
4. Ellis LM. Epidermal growth factor receptor in tumor angiogenesis. Hematology/Oncology Clinics. 2004;18(5):1007-21.
5. Geindreau M, Bruchard M, Vegran F. Role of cytokines and chemokines in angiogenesis in a tumor context. Cancers. 2022;14(10):2446.
6. Peng S, Wang Y, Peng H, Chen D, Shen S, Peng B, et al. Autocrine vascular endothelial growth factor signaling promotes cell proliferation and modulates sorafenib treatment efficacy in hepatocellular carcinoma. Hepatology. 2014;60(4):1264-77.
7. Zhang Y, Brekken RA. Direct and indirect regulation of the tumor immune microenvironment by VEGF. Journal of Leukocyte Biology. 2022;111(6):1269-86.
8. Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Frontiers in oncology. 2019;9:1370.
9. Gatenbee CD, Minor ES, Slebos RJ, Chung CH, Anderson AR. Histoecology: Applying ecological principles and approaches to describe and predict tumor ecosystem dynamics across space and time. Cancer Control. 2020;27(3):1-7
10. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling. 2020;18:1-19.
11. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde
and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity. 2014;2014.
12. Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxidants & redox signaling. 2011;15(6):1583-606.
13. Lymperaki E, Makedou K, Iliadis S, Vagdatli E. Effects of acute cigarette smoking on total blood count and markers of oxidative stress in active and passive smokers. Hippokratia. 2015;19(4):293.
14. Altun I, Sonkaya A. The most common side effects experienced by patients were receiving first cycle of chemotherapy. Iranian journal of public health. 2018;47(8):1218-9.
15. Chu E, Sartorelli A. Cancer chemotherapy. Lange’s Basic and Clinical Pharmacology. 2018:948-76.
16. Bicknell R. Targeting angiogenesis with monoclonal antibodies. Annals of Oncology. 2006;17:x76-x8.
17. Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clinical therapeutics. 2006;28(11):1779-802.
18. Zhang P-p, Dong Q, Hua Y-b, XU H-F. Effects of bevacizumab on morphology and apoptosis of human retinal pigment epithelial cells as well as the expression of apoptosis-related factors. Recent Advances in Ophthalmology. 2018:314-8.
19. Le TBU, Vu TC, Ho RZW, Prawira A, Wang L, Goh BC, et al. Bevacizumab augments the antitumor efficacy of infigratinib in hepatocellular carcinoma. International journal of molecular sciences. 2020;21(24):9405.
20. Shrivastava P, Vishwakarma N, Gautam L, Vyas SP. Magnetically responsive polymeric gels and elastomeric system (s) for drug delivery. Smart Polymeric Nano-Constructs in Drug Delivery: Elsevier; 2023. p. 129-50.
21. Liu W, Ou-Yang W, Zhang C, Wang Q, Pan X, Huang P, et al. Synthetic polymeric antibacterial hydrogel for methicillin-resistant staphylococcus aureus-infected wound healing: nanoantimicrobial self-assembly, drug-and cytokine-free strategy. ACS nano. 2020;14(10):12905-17.
22. Yao X, Zhu G, Zhu P, Ma J, Chen W, Liu Z, et al. Omniphobic ZIF‐8@ Hydrogel membrane by microfluidic‐emulsion‐templating method for wound healing. Advanced Functional Materials. 2020;30(13):1909389.
23. Kass LE, Nguyen J. Nanocarrier‐hydrogel composite delivery systems for precision drug release. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2022;14(2):e1756.
24. Li X, Xu X, Xu M, Geng Z, Ji P, Liu Y. Hydrogel systems for targeted cancer therapy. Frontiers in Bioengineering and Biotechnology. 2023;11.
25. Lee JH, Tachibana T, Yamana K, Kawasaki R, Yabuki A. Simple formation of cancer drug-containing self-assembled hydrogels with temperature and pH-responsive release. Langmuir. 2021;37(38):11269-75.
26. Grosskopf AK, Labanieh L, Klysz DD, Roth GA, Xu P, Adebowale O, et al. Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. Science Advances. 2022;8(14):eabn8264.
27. Buitrago JO, Patel KD, El-Fiqi A, Lee J-H, Kundu B, Lee H-H, et al. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Acta Biomaterialia. 2018;69:218-33.
28. Zhang Z, Neiva KG, Lingen MW, Ellis LM, Nör JE. VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2. Cell Death & Differentiation. 2010;17(3):499-512.
29. Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A. Biomarkers predicting clinical outcome of epidermal growth factor receptor–targeted therapy in metastatic colorectal cancer. Journal of the National Cancer Institute. 2009;101(19):1308-24.
30. Lv W, Zhao Y, Li X, Zhang M. Clinical effects of bevacizumab targeted treatment on advanced colorectal cancer with liver metastasis. Eur Rev Med Pharmacol Sci. 2016;20(11):2249-55.
31. Sarkanen J-R, Mannerström M, Vuorenpää H, Uotila J, Ylikomi T, Heinonen T. Intra-laboratory pre-validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators. Frontiers in pharmacology. 2011:1(147):1-13.
32. Truelsen SLB, Mousavi N, Wei H, Harvey L, Stausholm R, Spillum E, et al. The cancer angiogenesis co-culture assay: In vitro quantification of the angiogenic potential of tumoroids. Plos one. 2021;16(7):e0253258.
33. Dai J, Zhang H, Karatsinides A, Keller JM, Kozloff KM, Aftab DT, et al. Cabozantinib Inhibits Prostate Cancer Growth and Prevents Tumor-Induced Bone LesionsCabozantinib Inhibits Prostate Cancer Growth in Bone. Clinical Cancer Research. 2014;20(3):617-30.
34. Chittasupho C, Angklomklew J, Thongnopkoon T, Senavongse W, Jantrawut P, Ruksiriwanich W. Biopolymer hydrogel scaffolds containing doxorubicin as a localized drug delivery system for inhibiting lung cancer cell proliferation. Polymers. 2021;13(20):3580.
35. Bu Y, Shen H, Yang F, Yang Y, Wang X, Wu D. Construction of tough, in situ forming double-network hydrogels with good biocompatibility. ACS Applied Materials & Interfaces. 2017;9(3):2205-12.
36. Guo D, Xu S, Huang Y, Jiang H, Yasen W, Wang N, et al. Platinum (IV) complex-based two-in-one polyprodrug for a combinatorial chemo-photodynamic therapy. Biomaterials. 2018;177:67-77.
37. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell. 2011;144(5):646-74.
38. Hileman EA, Achanta G, Huang P. Superoxide dismutase: an emerging target for cancer therapeutics. Expert Opinion on Therapeutic Targets. 2001;5(6):697-710.
39. Escudero NL, De Arellano M, Fernández S, Albarracín G, Mucciarelli S. Taraxacum officinale as a food source. Plant foods for human nutrition. 2003;58:1-10
40. Środa-Pomianek K, Michalak K, Świątek P, Poła A, Palko-Łabuz A, Wesołowska O. Increased lipid peroxidation, apoptosis and selective cytotoxicity in colon cancer cell line LoVo and its doxorubicin-resistant subline LoVo/Dx in the presence of newly synthesized phenothiazine derivatives. Biomedicine & Pharmacotherapy. 2018;106:624-36.
41. Amaral JD, Xavier JM, Steer CJ, Rodrigues CM. The role of p53 in apoptosis. Discovery medicine. 2010;9(45):145-52.
42. Kastan MB, Canman CE, Leonard CJ. P53, cell cycle control and apoptosis: implications for cancer. Cancer and Metastasis reviews. 1995;14:3-15.
43. Thiel KW, Devor EJ, Filiaci VL, Mutch D, Moxley K, Alvarez Secord A, et al. TP53 sequencing and p53 immunohistochemistry predict outcomes when bevacizumab is added to frontline chemotherapy in endometrial cancer: An NRG oncology/gynecologic oncology group study. Journal of Clinical Oncology. 2022;40(28):3289-300.
44. Shen C-C, Cheng W-Y, Lee C-H, Dai X-J, Chiao M-T, Liang Y-J, et al. Both p53 codon 72 Arg/Arg and pro/Arg genotypes in glioblastoma multiforme are associated with a better prognosis in bevacizumab treatment. BMC cancer. 2020;20(1):1-13.
45. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nature medicine. 2005;11(12):1306-13