کاربرد نانوذرههای استرانسیم فرریت برای اندازهگیری الکتروشیمیایی هیدرازین در سطح نانومولار
محورهای موضوعی : شیمی تجزیهمحمد علی شیخ محسنی 1 , قاسم مرندی 2
1 - استادیار مرکز آموزش عالی شهید باکری میاندوآب، دانشگاه ارومیه، ارومیه، ایران
2 - استادیار دانشکده شیمی، گروه شیمی آلی، دانشگاه ارومیه، ارومیه، ایران
کلید واژه: هیدرازین, نانومواد, استرانسیم فرریت, ولتاسنجی پالس تفاضلی, نانومولار,
چکیده مقاله :
با توجه به اهمیت مقدار هیدرازین در نمونههای آبی متفاوت از نقطه نظرات زیستمحیطی و همچنین، کاربرد فراوان این ماده، نیاز است که غلظت آن در نمونههای متفاوت اندازهگیری شود. در این پژوهش، سعی شده است یک الکترود جدید و درعینحال ساده و ارزان برای اندازهگیری هیدرازین پیشنهاد و ارائه شود. این الکترود، یک الکترود خمیر کربن اصلاحشده با نانوذرههای استرانسیم فرریت است. این الکترود به دلیل وجود نانوذرهها در ساختمان خود حساسیت و انتخابگری خوبی در الکتروآنالیز هیدرازین دارد. نتایج روشهای ولتاسنجی چرخهای و زمان-آمپرسنجی به خوبی اکسایش کاتالیستی هیدرازین در سطح الکترود پیشنهادی را نشان دادند. حسگر ساختهشده دارای دو گستره خطی، یکی در گستره 5/0 تا 20 میکرومولار و دیگری در گستره 20 تا 600 میکرومولار برای هیدرازین است. این الکترود گزینشپذیری مناسبی در اندازهگیری هیدرازین از خود نشان داد. بررسی تکرارپذیری، تجدیدپذیری و طول عمر الکترود نیز انجام گرفت و نتایج قابل قبولی به دست آمد. اندازهگیری هیدرازین در نمونههای آبی متفاوت مانند آب شهر و آب چاه انجام گرفت. درصدهای بازیابی محاسبهشده در نمونههای حقیقی نشان داد که توانایی الکترود ساختهشده در اندازهگیری نمونههای واقعی خوب و قابلاطمینان است.
Due to the importance of the amount of hydrazine in water samples from the environmental point of view as well as frequent usage of this matter, the concentrations of this substance were to be measured in different samples. In this study, a new and simple electrode was fabricated for measuring hydrazine. The electrode was a carbon paste electrode modified by strontium ferrite nanoparticles. The electrode showed good sensitivity and selectivity for the electroanalysis of hydrazine due to the presence of nanoparticles. Voltammetric and chronoamperometric techniques proposed a good catalytic oxidation of hydrazine at the electrode surface. The hydrazine sensor was showed two linear calibration range which covers 0.5 to 20 micromolar and 20 to 600 micromolar. The selectivity of the electrode for measuring the hydrazine was good. Also the repeatability, reproducibility, and lifetime of the electrodes were acceptable. Determination of hydrazine in aqueous samples such as tap water and well water were performed. The obtained recovery percentages showed that the ability of the electrode in determination of real samples is reliable
[1] Schirmann, J.P.; Bourdauducq, P.; “Hydrazine in Ullmann's Encyclopedia of Industrial Chemistry”, Wiley-VCH, Weinheim, 2002.
[2] Rothgery, E.F.; “Hydrazine and Its Derivatives”, Kirk-Othmer Encyclopedia of Chemical Technology, Wiley-VCH, Weinheim, 2004.
[3] Badgujar, D.M.; Talawar, M.B.; Asthana, S.N.; Mahulikar, P.P.; Journal of Hazardous Materials 151, 289-305, 2008.
[4] Gholamian, F.; Sheikh-Mohseni, M.A.; Naeimi, H.; Materials Science and Engineering C 32, 2344-2348, 2012.
[5] Sinha, B.K.; Mason, R.P.; Journal of Drug Metabolism and Toxicology 5, 168-171, 2014.
[6] Matsumoto, M.; Kano, H.; Suzuki, M.; Katagiri, T.; Umeda, Y.; Fukushima, S.; Regulatory Toxicology and Pharmacology 76, 63-73, 2016.
[7] Ganesh, S.; Khan, F.; Ahmed, M.K.; Pandey, S.K.; Talanta 85 (2), 958-963, 2011.
[8] Sahoo, P.; Malathi, N.; Ananthanarayanan, R.; Praveen, K.; Murali, N.; Review of Scientific Instruments 82 (11), 114102, 2011.
[9] George, M.; Nagaraja, K.S.; Balasubramanian, N.; Talanta 75, 27-31, 2008.
[10] Oh, J.A.; Park, J.H.; Shin, H.S.; Analytica Chimica Acta 769, 79-83, 2013.
[11] Liu, B.; Liu, Q.; Shah, M.; Wang, J.; Zhang, G.; Pang, Y.; Sensors and Actuators B: Chemical 202, 194-200, 2014.
[12] Safavi, A.; Karimi, M.A.; Talanta 58, 785-792, 2002.
[13] Golabi, S.M.; Zare, H.R.; Hamzehloo, M.; Microchemical Journal 69, 13-23, 2001.
[14] Mazloum-Ardakani, M.; Khoshroo, A.; Electrochimica Acta 103, 77-84, 2013.
[15] Salimi, A.; Abdi, K.; Talanta 63, 475-483, 2004.
[16] Aziz, M.A.; Kawde, A.N.; Talanta 115, 214-221, 2013.
[17] Kazemi, S.H.; Hosseinzadeh, B.; Zakavi, S.; Sensors and Actuators B: Chemical 210, 343-348, 2015.
[18] Devasenathipathy, R.; Mani, V.; Chen, S.M.; Talanta 124, 43-51, 2014.
[19] Ketov, S.V.; Yagodkin, Y.D.; Menushenkov, V.P.; Journal of Alloys and Compounds 509, 1065-1068, 2011.
[20] Augustin, C.O.; Selvan, R.K.; Nagaraj, R.; Berchmans, L.J.; Materials Chemistry and Physics 89, 406-411, 2005.
[21] Singh, M.; Yadav, B.C.; Ranjan, A.; Sonker, R.K.; Kaur, M.; Sensors and Actuators B: Chemical 249, 96-104, 2017.
[22] Nicholson, R.S.; Analytical Chemistry 37, 1351-1355, 1965.
[23] Bard, A.J.; and Faulkner, L.R.; “Electrochemical Methods: Fundamentals and Applications”, 2nd ed., Wiley, New York, 2001.
[24] Sheikh‐Mohseni, M.A.; Pirsa, S.; Electroanalysis 28, 2075-2080, 2016.
[25] Golabi, S. M.; Zare, H.R.; Journal of Electroanalytical Chemistry 465, 168-176, 1999.
[26] Golabi, S.M.; and Jalil, M.; Iranian Journal of Chemistry and Chemical Engineering 22, 43-54, 2003.
[27] Hadi, M.; Rouhollahi, A.; Yousefi, M.; Sensors and Actuators B: Chemical 160, 121–128, 2011.
[28] Abbaspour, A.; Khajehzadeh, A.; Ghaffarinejad, A.; Journal of Electroanalytical Chemistry 631, 52-57, 2009.
[29] Benvidi, A.; Jahanbani, S.; Mirjalili, B.F.; Zare, R.; Chinese Journal of Catalysis 37, 549–560, 2016.
[30] Gu, X.; Li, X.; Wu, S.; Shi, J.; Jiang, G.; Jiang, G.; Tian, S.; RSC Advances 6, 8070-8, 2016.
[31] Sophia, S.J.; Devi, S.; Pandian, K.; International Journal of Electrochemical Science 7, 6580–6598, 2012.
[32] Pal, T.; Dutta, S.; Ray, C.; Mallick, S.; Sarkar, S.; Roy, A.; RSC Advances, 5, 51690- 51700, 2015.
[33] ASTM D 1385: The Test Method For Hydrazin in Water, 1997.