بررسی تأثیر بازدارنده پایه ایمیدازولین و مطالعه رفتار خوردگی فولاد X65 در محیط اسیدکلریک
محورهای موضوعی : یافته های نوین کاربردی و محاسباتی در سیستم های مکانیکیمهدی بروجردنیا 1 * , عباس رجبی 2
1 - گروه مهندسی مواد و متالورژی، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران
2 - گروه مهندسی مواد، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.
کلید واژه: ممانعت کننده پایه ایمیدازولین, فولاد میکروآلیاژی X65, اسید کلریدریک,
چکیده مقاله :
اسید کلریدریک در صنایع مختلف کاربرد دارد که یکی از کاربردهای آن در صنایع نفت و گاز جهت اسیدشویی بویلرها و اسیدکاری چاههای نفت است. در این پژوهش تاثیر ممانعت کننده پایه ایمیدازولین PL-464 بر روی فولاد میکروآلیاژی X65 در محلول اسید کلریدریک بررسی شده است. به همین منظور آزمونهای پلاریزاسیون و طیف سنجی امپدانس الکتروشیمیایی در غیاب و در حضور غلظتهای 50، 100 و 150 ppm ممانعت کننده پایه ایمیدازولین در دماهای 25، 40 و 60 درجه سانتیگراد در محلول اسید کلریدریک انجام شد. نتایج این آزمونها نشان داد که این ممانعت کننده از نوع جذبی و مکانیزم اثر آن جذب سطحی است. با افزایش دما، پتانسیل خوردگی به سمت مقادیر مثبتتر جابجا شده و راندمان بازدارندگی کاهش یافته است. همچنین با افزایش غلظت ممانعت کننده میزان خوردگی کاهش یافته است. درصد کاهش وزن ناشی از خوردگی با افزایش غلظت ممانعت کننده کاهش یافته است. نتایج آنالیز میکروسکوپ الکترونی و طیف سنجی پراش انرژی پرتو ایکس نیز نشان داد که در محلول دارای ممانعت کننده نسبت به محلول بدون ممانعت کننده سطح فولاد صافتر بوده که این امر نشان میدهد مولکولهای ممانعت کننده با تشکیل یک لایه محافظ روی سطح فولاد از حل شدن فولاد در اسید جلوگیری میکند.
Hydrochloric acid is used in many industries. One of its applications is for boilers’ acid cleaning and well acidizing in the oil and gas industry. For the reduction of HCl corrosion on metal parts and installations, corrosion inhibitors are used. In this research, the effect of Imidazole-Based corrosion inhibitor PL-464 and the corrosion behavior of X65 steel in Hydrochloric Acid (HCl) is considered. Polarization and Electrochemical Impedance Spectroscopy (EIS) experiments without and with 50, 100, and 150 ppm of PL-464 corrosion inhibitor at 25, 40, and 60ºc in hydrochloric acid solution are done. The result of these experiments showed that PL-464 inhibits corrosion by surface adsorption mechanisms. As temperature increases, corrosion potential moves toward positive amounts, and inhibition efficiency decreases. Also, corrosion decreases as inhibitor concentration is increased. Weight loss experiment at 25, 60ºc without and with 50, 150 ppm inhibitor is done, which corrosion weight loss percent is decreased as inhibitor concentration is increased. SEM and EDAX analysis showed that the steel surface in solution without inhibitor is damaged and Fe picks are shorter with respect to steel in solution with inhibitor. The results are attributed to the adsorption of inhibitors onto the steel surfaces which protects the steel surface from dissolving in acid solution.
[1] El-Sherik A.M., (2017), Trends in Oil and Gas Corrosion Research and Technologies, Production and transmission, Woodhead Publishing Series in Energy, 1st edition.
[2] هاشمی، سید حجت، رخش خورشید، مسعود، (1391) بررسی اثر ترکیب شیمیایی بر خواص مکانیکی فولاد میکروآلیاژی گرید "X65، نشریه علوم کاربردی و محاسباتی در مکانیک، سال بیست و سوم، شماره دو، صفحات 47-64،.
[3] Farag, A. A., Hegazy, M., (2013), Synergistic inhibition effect of potassium iodide and novel Schiff bases on X65 steel corrosion in 0.5 M H2SO4, Corrosion Science, 74, pp 168–177.
[4] Finšgar, M., Jackson, J., (2014), Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review, Corrosion Science, 86, pp 17-41.
[5] Hegazy, M., Abdallah, M., Awad, M. Rezk, M., (2014), Three novel di-quaternary ammonium salts as corrosion inhibitors for API X65 steel pipeline in acidic solution, Corrosion Science, 81, pp 54–64.
[6] Farag, A., Ismail, A. S., Migahed, M.A., (2015), Inhibition of carbon steel corrosion in acidic solution using some newly polyester derivatives, Journal of Molecular Liquids, 211, pp 915-923.
[7] Ahmed, A., Farag, M.R., Noor El-Din, (2012), The adsorption and corrosion inhibition of some nonionic surfactants on API X65 steel surface in hydrochloric acid, Corrosion Science, 64, pp 174–183.
[8] Zhang, L., He, Y., Zhou, Y., Yang, R., Yang, Q., Qing, D. Niu, Q., (2015), A novel imidazoline derivative as corrosion inhibitor for P110 carbon steel in hydrochloric acid environment, Petroleum, 1, pp. 237-243.
[9] Zhang, H. h., Gao, K., Yan, L. Pang, X., (2017), Inhibition of the corrosion of X70 and Q235 steel in CO2-saturated brine by imidazoline-based inhibitor, Journal of Electroanalytical Chemistry, 791, pp 83–94.
[10] Goldstein, Joseph, (2003) Scanning Electron Microscopy and X-ray Microanalysis, Third Edition, Plenum Press, New York.
[11] مرعشی، پیروز، کاویانی، سعید، (1389) میکروسکوپهای الکترونی و روشهای نوین آنالیز، ابزار شناسایی دنیای نانو، چاپ دوم، انتشارات دانشگاه علم و صنعت ایران.
[12] کرباسی، مریم، (1390) میکروسکوپهای الکترونی روبشی و کاربرد های آن در علوم مختلف و فناوری نانو، چاپ اول، مرکز انتشارات جهاد دانشگاهی واحد صنعتی اصفهان.
[13] Heath, J. Taylor, N. (2015), Energy Dispersive Spectroscopy, Second Edition, Essential Knowledge Briefings.
[14 Migahed, M. Nassar, I., (2008), Corrosion inhibition of Tubing steel during acidization of oil and gas wells, Electrochimica Acta, 53, pp. 2877-2882.
[15] Garai,S., Garai, S., Jaisankar, P., Singh,J.K., Elango,A., (2012), A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution Corrosion Science, 60, pp 193–204.
[16] Yan,Y., Li, W., Cai,L., Hou, B., Hou,(2008), Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1M HCl solution, Electrochimica Acta, 53, pp 5953–5960,.
[17] Benali, O., Larabi, L., Traisnel, M.,(2007), Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1 M HClO4, Applied Surface Science, 253, pp 6130-6139.
[18] بهرامی پناه، نیلوفر، دانایی، ایمان، (1394) بررسی اثر بازدارندگی 2و 4 دی هیدروکسی پروپیوفنون 2 و 2 دی متیل پروپان دی ایمین بر خوردگی فولاد X65 در محیط 1M HCl، فصلنامه علوم و مهندسی خوردگی سال پنجم، شماره 8، صفحات 69-79.
[19] Hegazy, M.A., El-Tabei, A.S., Bedair, A.H., Sadeq, M.A., (2012), An investigation of three novel nonionic surfactants as corrosion inhibitor for carbon steel in 0.5 M H2SO4, Corrosion Science, 54, pp. 219–23.
[20] Sadeghi Meresht, E., Shahrabi Farahani, T., Neshati J.,(2011), Failure analysis of stress corrosion cracking occurred in a gas transmission steel pipeline, Engineering Failure Analysis, 18, pp 963–970.
[21] Hong, J.H., Lee, S.H., Kim, J.G., Yoon, J.B., (2012), Corrosion behavior of copper containing low alloy steels in sulphuric acid, Corrosion. Science, 54, pp 174–182.
[22] Ahmed, A., Farag, M.R. Noor El-Din, (2012), The adsorption and corrosion inhibition of some nonionic surfactants on API X65 steel surface in hydrochloric acid, Corrosion Science, 64, pp 174–183.
[23] Amin, M. A., Abd El-Rehim, S. S., El-Sherbini, E. Bayoumi, R. S. (2007), The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies, Electrochimica Acta, 52, pp 3588–3600.
[24] Lamaka, S. V., Zheludkevich, M. L., Yasakau, K. A., Serra, R., Poznyak, S., Ferreira, M., (2007), Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability, Progress in organic coatings,58, PP 127-135.
[25] Duan, H., Duk, Yan C., Wang, F., (2006), Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D, Electrochimica Acta, 51, PP 2898-2908.
[26] Mahdavian, M., Ashhari, S., (2010), Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution", Electrochimica Acta, 55, PP 1720–1724.
_||_