تحلیل واریانس چند عاملی و رگرسیون چند متغیره در تعیین ضریب هدایت حرارتی نانوسیال
محورهای موضوعی : یافته های نوین کاربردی و محاسباتی در سیستم های مکانیکیمحمدرضا قلانی 1 , مسلم برزگری 2 , اشکان غفوری 3
1 - گروه آمار، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.
2 - کارشناسی ارشد مکانیک، موسسه غیرانتفاعی اروندان، خرمشهر. ایران.
3 - گروه مکانیک، دانشگاه آزاد اسلامی واحد اهواز، اهواز، ایران
کلید واژه: آنالیز واریانس چند عاملی, اتیلن گلیکول, نانوسیال, رگرسیون چند متغیره, ضریب هدایت حرارتی,
چکیده مقاله :
از روش های آماری در تحلیل انواع داده ها استفاده میشود. در این مقاله با استفاده از روش آنالیز واریانس چند عاملی و رگرسیون چند متغیره، داده های مربوط به هدایت حرارتی نانوسیالها مورد بررسی قرار گرفته و نتایج دو روش مقایسه شده است. برای آماده سازی نانوسیال اتیلن گلیکول- اکسید منیزیم از روش دو مرحلهای استفاده شد. به منظور آماده سازی نانوسیال به وسیله تعلیق کردن نانوذرات در سیال پایه، از دستگاه همزن آلتراسونیک استفاده گردید. بدین منظور از نانوذرات با قطرهای 50،20 و 100 نانومتر در کسرهای حجمی25/0، 5/0، 75/0، 1 و 25/1 درصد در دماهای 50،45،40،35،30،25 درجه سانتیگراد استفاده شده است. از روش سیم داغ گذرا برای اندازهگیری ضریب هدایت حرارتی درکسرهای حجمی مختلف استفاده شد. سپس مقادیر تجربی بدست آمده با استفاده از نرم افزار SPSS.26 مورد تحلیل قرار گرفت. ضریب تعیین و نمودارهای خطاهای بدست آمده در دو روش نشان داد که وقتی متغیرهای مستقل به صورت گروهبندی شده تعریف میشوند استفاده از آنالیز واریانس چند عاملی بهتر میتواند پراکندگی ضریب هدایت حرارتی را توصیف نماید.
Statistical methods are used in the analysis of all types of data. In this paper, using multivariate analysis of variance and multivariate regression, the data related to the thermal conductivity of nanofluids have been analyzed and the results of the two methods have been compared. A two-step method was used to prepare ethylene glycol-magnesium oxide nanofluid. In order to prepare the nanofluid by suspending the nanoparticles in the base fluid, an ultrasonic homogenizer was used. For this purpose, nanoparticles with diameters of 20, 50, and 100 nm in volume fractions of 0.25, 0.5, 0.75, 1, and 1.25% have been used at temperatures of 25, 30, 35, 40, 45, and 50 degrees Celsius. Transient hot wire method was used to measure thermal conductivity in different volume fractions. Then the obtained experimental values were analyzed using SPSS.26 software. The coefficient of determination and the graphs of the errors obtained in the two methods showed that when the independent variables are defined as grouped, the use of multivariate analysis of variance can better describe the dispersion of the thermal conductivity.
[1] Huminic, G., Huminic, A., (2012) Application of nanofluids in heat exchangers: A review, Renewable and Sustainable Energy Reviews, 16(8), pp. 5625-5638.
[2] Ghafouri, A., Salari, M. (2014) Numerical investigation of the heat transfer enhancement using various viscosity models in chamber filled with water–CuO nanofluid, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36, pp. 825-836.
[3] Ghafouri, A., Salari,M., Jozaei, A. F., Effect of variable thermal conductivity models on the combined convection heat transfer in a square enclosure filled with a water–alumina nanofluid, Journal of Applied Mechanics and Technical Physics, 58(1), pp. 103-115.
[4] Meybodi, M. K., Daryasafar, A., Koochi, M. M., Moghadasi, J., Meybodi, R. B., Ghahfarokhi, A. K., (2016), A novel correlation approach for viscosity prediction of water based nanofluids of Al2O3, TiO2, SiO2 and CuO, Journal of the Taiwan Institute of Chemical Engineers, 58, pp. 19-27.
[5] Yiamsawasd,T., Dalkilic, A. S., Wongwises, S., (2012), Measurement of the thermal conductivity of titania and alumina nanofluids, Thermochimica acta, 545, pp. 48-56.
[6] Esfe, M. H. Saedodin, S., (2014), An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions, Experimental thermal and fluid science, 55, pp. 1-5.
[7] Katpatal, D. C., Andhare, A. B., Padole, P. M., Khedkar, R. S.,(2017) Study of dispersion stability and thermo-physical properties of CuO-Jatropha oil-based nanolubricants, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, pp. 3657-3668.
[8] Moreira, T. A., Colmanetti, A. R. A., Tibirica, C. B., (2019), Heat transfer coefficient: a review of measurement techniques, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, pp. 1-25.
[9] Nair , V., Parekh , A., Tailor, P., (2020), Performance analysis of Al 2 O 3–R718 nanorefrigerant turbulent flow through a flooded chiller tube: a numerical investigation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, pp. 1-16.
[10] Arani A. A. A., Pourmoghadam, F., (2019), Experimental investigation of thermal conductivity behavior of MWCNTS-Al 2 O 3/ethylene glycol hybrid Nanofluid: Providing new thermal conductivity correlation, Heat and Mass Transfer, 55, pp. 2329-2339.
[11] LotfizadehDehkordi, B., Kazi, S. N., Hamdi, M., Ghadimi, A., Sadeghinezhad, E., Metselaar, H. S. C., (2013), Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS, Heat and Mass transfer, 49, pp. 1109-1115.
[12] Motevasel, M., Nazar,A. R. S., amialahmadi M. J., (2018), The effect of nanoparticles aggregation on the thermal conductivity of nanofluids at very low concentrations: experimental and theoretical evaluations, Heat and Mass Transfer, 54, pp. 125-133.
[13] Yoo, D., Lee, J., Lee, B., Kwon, S., Koo, J., (2018), Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus, Heat and Mass Transfer,54, pp. 415-424.
[14] Mousavi, S. M., Esmaeilzadeh, F., Wang, X. P., (2019), Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO 2 aqueous ternary hybrid nanofluid, Experimental investigation. Journal of Thermal Analysis and Calorimetry, 137, pp. 879-901.
[15] Moldoveanu, G. M., Minea, A. A., Huminic, G., Huminic, A., (2019), Al 2 O 3/TiO 2 hybrid nanofluids thermal conductivity: an experimental approach, Journal of Thermal Analysis and Calorimetry, 137, pp. 583-592.
[16] Esfe, M. H., AraniA, . A. A., Rezaie, M., Yan, W.-M., Karimipour, A., (2015), Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid, International Communications in Heat and Mass Transfer, 66, pp. 189-195.
[17] Giwa, S., Sharifpur, M., Goodarzi, M., Alsulami, H., Meyer, J., (2021), Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting, Journal of Thermal Analysis and Calorimetry, 143, pp. 4149-4167.
_||_