تاثیر تنش شوری بر میزان تجمع آنتوسیانین، پرولین و گلیسین بتائین در ارقام تجاری پنبه (Gossypium hirsutum L.)
محورهای موضوعی : ژنتیکسیدجلال میرقاسمی 1 * , محمدعلى محمدعلى رضایى 2 , عمران عالیشاه 3 , معصومه شابدین 4
1 - دانشگاه آزاد اسلامی واحد گرگان
2 - دانشگاه آزاد اسلامی واحد گرگان
3 - عضو هیات علمی موسسه تحقیقات پنبه کشور، گرگان
4 - دانشجوی کارشناسی ارشد علوم گیاهی، دانشگاه آزاد اسلامی واحد گرگان
کلید واژه: پرولین, پنبه, شوری, آنتوسیانین, گلیسین بتائین,
چکیده مقاله :
به منظور بررسی اثرات شوری خاک بر خصوصیات فیزیولوژیکی ژنوتیپهاى پنبه، این آزمایش در سال 1386 به صورت گلدانی در شرایط فیتوترون، به شکل فاکتوریل و در قالب طرح بلوکهای کاملاً تصادفی در چهار تکرار اجرا شد. ارقام شامل ساحل، سایاکرا و N200 و شوری به عنوان فاکتور دوم با چهار سطح شامل 6/0، 6/7، 2/15 و 9/29 دسیزیمنس بر متربوده است. بر اساس نتایج تجزیه واریانس، اثر شوری بر آنتوسیانین، پرولین و گلیسین بتائین در سطح آماری یک درصد، معنیدار بود. در بین ارقام از نظر میزان پرولین و گلیسین بتائین اختلاف معنىدارى درسطح پنج درصد وجود داشت و در عین حال اختلاف قابل ملاحظهاى ازنظر مقدارآنتوسیانین مشاهده نشد. مقایسه میانگینها نشان داد که رقم N200 از نظر گلیسین بتائین بیشترین مقدار را داشت. مقایسه میانگین صفات در سطوح شوری نشان میدهد که با افزایش شوری، میزان آنتوسیانین، پرولین و گلیسین بتائین افزایش مییابد. بر اساس نتایج، مقایسه میانگین صفات مختلف پنبه در سطح شوری 9/29 دسیزیمنس بر متر، افزایش در مقدار آنتوسیانین، پرولین و گلیسین بتائین دیده شد.
In order to studying the effect of soil salinity on physiological characteristics of Cotton genotypes this experiment was conducted in 1386 with potted cottons in phytotron condition and carried out as factorial in completely randomized design with 4 replications. One factor was Cotton cultivars and the other was levels of salinity at rate of 0.6, 7.6, 15.2 and 29.9ds/m. The results showed that the effect of salinity on physiological characteristics of Cotton plant such as anthocynanine, proline and glycinebetain were significant at 1% probability within cultivars. There were significant diffrences at 5% probability in relation to praline and glycinebetain. No significant difference was found between cultivars in regard to anthocyanine. By increasing the salinity in the soil the amount of anthocyanine, proline and glycine betain increased in Cotton plant.
احیایی، م.ع. و بهبهانیزاده، ع.ا. (1372). شرح روشهای تجزیه شیمیایی خاک. چاپ اول. وزارت کشاورزی. سازمان تحقیقات آموزش و ترویج کشاورزی. موسسه تحقیقات خاک و آب. نشریه 893.
منطقی، ن. (1365). تشریح روشها و بررسی آزمایشگاهی روی نمونههای خاک و آب. موسسه تحقیقات خاک و آب. نشریه شماره 168.
_||_Atoshi, S., Murata, N. (2001). The use of bacterial choline oxidase a glycine betaine synthesizing enzyme to create stress-resistant transgenic plants. Plant Physiol, 125: 180-188.
Bates, L.S., Waldern, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.
Byerrum, R.U., Sato, C.S.M., Ball, C.D. (1956). Utilazation of betaine as a methyle group in tobacco. Plant physiol, 31: 374-377.
Clarkson, D.T., Hanson, J.B. (1980). The mineral nutrition of higher plants. Annual Review of Plant Physiology. 31: 239-298.
Davenport, R.J., Tester, M. (2000). A weakly voltage-dependent, non-selective cation ahannelmediates toxic sodium influx in wheat. Plant Physiology, 122: 823-834.
Delacerda, C.F., Cambraia, J., Olivacano, M.A., Albertoruiz, H. (2001). Plant growth and solut accumulation and distribution in two Sorghum genotypes. Under NaCl stress. Bras, Physiol, Veg
El-Baz, F.K., Mahamed, A.A., Aly, A.A. (2003). Development of biochemical markes for salt stress tolerance in cucumber Plants. Pakistan Journal of Biological Sciences. 6(1): 16-22.
Flower,T.J.,Yeo,AR.(1995). Breeding for salinity resistance in crop plants:where next.Aust.J.Plant Physiol.22:875-885.
Flynn, R., Phillips, R., Ulery, A., Kockevar, R., Liess, L., and Villa, M. (1998). Chile seed germination as affected by temperature and salinity. New Mexico Chile Task Force. 1-10.
Gomes de Souzal, J., Vieira da Silva, J. (1996). Contribution of genetic material from some wild diploid species to the cultivated tetraploid Gossyupium hirsutum L.
Hellman, H., Funck, D., Rentsch, D., Frommer, W.B. (2000). Hypersentivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiology. Vol. 123, Pp. 779-789.
Jamil, M., Chunlee, C., Rehman, S.U., Baelee, D., Ashraf, M., Rha, E.S. (2005). Salinity (NaCl) tolerance of Brassica species at germination and early seedling growth. Ejeafch. 4(4): 970-976.
Kaliamoorthy,S.,Rao,A.S.(1994).Effect of salinity on anthocyanin accumulation in the root of maize. Ind.J. Olant Physiol. 37, 169-170.
Maathuis, F.J.M., Amtmann, A. (1999). K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratio. Annals of Botany, 84: 123-133.
Mancinelli, A.L., Hoff, A.M., Cottrell, M. (1998). Anthocyanin production in Chl-rich and Chl-poor seedling. Plant Phyisiol. 86: 652-654.
Mita, S., Murano, N., Akaiko, M., Nakamura, K. (1997). Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant. J. 11: 841-851.
Murata, Y., Yoshihashi, M., Obi, I., Kakutani, T. (1998). Ca2+ regulation of outward rectifying K+ channel in the plasma membrane of tobacco cultured cells in suspension: a role of the K+ channel in mitigation of salt-stress effects by external Ca+. Plant Cell Physiology. 39: 1039-1044
Murray, Y.,. (1994). Ca2+ regulation of outward rectifying K+ channel in the plasma membrane of tobacco cultured cells in suspension: a role of the K+ channel in mitigation of salt-stress effects by external Ca+. Plant Cell Physiology. 39: 1039-1044
Naidu, B.P., Cameron, D.F., Konduri, S.V. (2006). Tropical agriculture. 13th Australian Agronomy Confer
Ramanjulu,S.,Veeranjaneyulu,K.,Sudhakar,C.(1993).Pysiological changes induced by NaCl in mulberry var. Mysore local. Ind.J.Plant Physiol. 36,273-275
Sadiq, M., Jamil, M., Mehdi, S.M., Sarfaraz, M., Hassan, G. (2002). Comparative performance of Brassica varietes/lines under salin sodic condition. Asian Journal of Plant Science. 2: 77-78.
Sairam, R.K., Srivastava, G.C. (2002). Changes in antioxidant activity in sub-cellular fraction of tolerant and suceptible wheat genotypes to long term salt stress. Plant Sci. 162: 897-904.
Sairam, R.K., Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science. 86: 407-420.
Shi, H., Ishitani, M., Kim, C., Zhu, J.K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/K+ antiporter. Proceeding of the National Academy of Science USA. 97: 6896-6901.
Wanichan, P., Kirdmanee, C., Vutyano, C. (2003). Effect of salinity on biochemical and physiological characteristics in correlation to selection of salt-tolerance in Aromatic rice (Oriza Sativa L.). Science Asian. 29: 333-339.
William, W.P., Brain, A.P.R., Dominy, P.J. (1992). Induction of non-bilayer lipid phase separation in chloroplast thylakoid membranes by compatible solutes and its relation to the thermal stability of photosystem II. Biochem biophys. Acta. 1099: 137-141.
Xing, W., Rajashekar, C.B. 2001. Glycine betanie involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environmental and Experimantal Botany. Vol. 46, Issue. 1, Pp. 21-28.
Yeo, A.R., Lee, K.S., Izard, P., Flowers, T.J. (1991). Short and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). Journal of Experimental Botany. 42: 881-889.
Zafar, S., Yasin, M., Sarwar, G., Mahmood, S., Kausar, A., Eftekhar, A. (2004). Variation in growth and ion uptake in salt tolerant and sensitive Rice cultivars under NaCl salinity. Asian Journal of Plant Sciences. 3(2): 156-158.
Zidan, I., Jacoby, B., Raviana, I., Neumann, P.M. (1991). Sodium does not compete with calcium in saturation plasma membrane sites regulation 22Na+ influx into salinized maize roots. Plant Physiology. 96: 331-334.