بررسی اثر غلظتهای مختلف سایتوکینین و اکسین بر کشت درونشیشهای عروسک پشت پرده (Physalis alkekengi L.) با استفاده از جداکشتهای برگی و ساقه
محورهای موضوعی : گیاهان داروییمنا کاشانچی 1 , الهه پورفخرایی 2 * , میترا پارسا 3 , امینه زینالی 4
1 - گروه بیوتکنولوژی صنعت و محیط، پژوهشکده علوم پایه کاربردی، جهاد دانشگاهی، دانشگاه شهید بهشتی، تهران، ایران
2 - گروه بیوتکنولوژی صنعت و محیط، پژوهشکده علوم پایه کاربردی، جهاد دانشگاهی، دانشگاه شهید بهشتی، تهران، ایران
3 - گروه بیوتکنولوژی صنعت و محیط، پژوهشکده علوم پایه کاربردی، جهاد دانشگاهی، دانشگاه شهید بهشتی، تهران، ایران
4 - گروه بیوتکنولوژی صنعت و محیط، پژوهشکده علوم پایه کاربردی، جهاد دانشگاهی، دانشگاه شهید بهشتی، تهران، ایران
کلید واژه: BAP, بذر, باززایی, کالوس, کشت درون شیشه, Physalis alkekengi ,
چکیده مقاله :
عروسک پشت پرده (Physalis alkekengi) یک گیاه میوهدار است که بهدلیل خواص غذایی و دارویی مورد توجه بسیار قرار گرفته است. چرخه زایشی کوتاه و حساسیت میوهها به آفات از محدودیتهای اصلی کشت این گیاه است. استفاده از روش های ریزازدیادی برای تولید عروسک پشت پرده به عنوان راهکاری کاربردی مطرح است. این مطالعه به منظور بررسی تأثیر محیطهای کشت و تنظیمکنندههای رشد مختلف روی جوانهزنی بذر و رشد دانه عروسک پشت پرده با استفاده از روش کشت بافت و نیز ارائه پروتکل مناسب برای ریزازدیادی این گیاه انجام شد. برای بررسی بیشترین درصدجوانهزنی، بذرها در دو نوع محیط کشت (موراشیگ و اسکوگ تغییر یافته و آب مقطر) و سه بستر نگهدارنده مختلف (آگار گیاهی، ماسه و کاغذ فیلتر) کشت داده شدند. برای اندامزایی گیاه عروسک پشت پرده از دو روش باززایی مستقیم (جداکشت ساقه) و باززایی غیرمستقیم (کالوسهای تولید شده از جداکشتهای ساقه و برگ) استفاده شد. جداکشتها در ترکیبات مختلف هورمونی 6-Benzylaminopurine (BAP) و 2,4-Dichlorophenoxyacetic acid (2,4-D) کشت شدند. بهترین محیط کشت برای جوانه زنی بذر، محیط کشت MS (2/1) حاوی آگار گیاهی به عنوان تثبیت کننده (97درصد) بود. بهترین جداکشت برای تولید کالوس، برگ و بهترین محیط کشت MS (2/1) حاوی ۴٬۲-دیکلروفنوکسیاستیک اسید (2 میلیگرم در لیتر) بود. بهترین محیط برای باززایی، MS (2/1) حاوی GA3 (5/0 میلیگرم در لیتر) وBAP (3 میلیگرم در لیتر) بود. بهترین هورمون برای اندامزایی مستقیم ساقه، BAP در غلظتهای مختلف بود. بهترین محیط برای ازدیاد گیاهچه MS (2/1) حاوی 6- بنزیلآمینوپورین به میزان 3 میلیگرم در لیتر و جیبرلیک اسید به میزان 5/0 میلیگرم در لیتر (بیش از 25 شاخساره از هر نمونه بود. ریشهزایی با استفاده از قرار دادن گیاهچهها در ایندول-۳-بوتیریک اسید (150 میلیگرم در لیتر) به مدت یک هفته و سپس انتقال آنها به MS (2/1) انجام شد. در نهایت گیاهچههای ریشهدار شده به خاک منتقل و سازگار شدند و بیش از 95 درصد آنها در گلخانه زنده ماندند. این نتایج پروتکلی را برای ریزازدیادی تجاری گیاهان عروسک پشت پرده پیشنهاد میکند.
Physalis alkekengi is a fruit-bearing plant in Iran. It is very popular due to the nutritional and medicinal properties. The main limitations of its cultivation are short reproductive cycle, fruits susceptibility to pests and limited information about crop management. The use of different micropropagation methods to produce physalis is proposed as practical solution. This study was conducted to evaluate the effect of culture medium and different concentrations of growth regulators on the seeds germination and organogenesis of P. alkekengi by using tissue culture technique as well as providing a suitable protocol for in vitro micropropagation of this plant. Seeds were cultured in 1/2 MS and distilled water with three different stabilizers including Plant Agar, Sand and Filter Paper. Direct regeneration (stem) and indirect regeneration (callusing from stem and leaf explants) were used for regeneration of the physalis. Explants were cultured in different hormone combinations of 6-Benzylaminopurine (BAP in 2 and 3 mg/L) and 2, 4-Dichlorophenoxyacetic acid (2, 4-D) (2 mg/L). The best seed germination medium was 1/2 MS contains plant agar as stabilizer (95%). The best explant for callusing was leaf and the best medium was ½ MS containing 2, 4-D (2 mg/ L). The best regeneration medium was BAP (3 mg / L) + GA3 (0.5 mg / L) on MS 1/2. The best hormone for direct organogenesis of stem was BAP at different concentrations. The best medium for micropropagation was ½ MS containing BAP (3 mg / L) + GA3 (0.5 mg / L) (more than 25 seedlings per explant). Rooting was performed using IBA (150 mg / L) followed by transferring seedlings to ½ MS after one week. Finally, seedlings were easily transferred to the soil and more than 95% of them survived in the greenhouse. These results suggest a protocol for commercial micropropagation of physalis plants.
Chaves, A.D.C., Schuch, M.W., and Erig, A.C. (2005). Estabelecimento e multiplicação in vitro de Physalis peruviana L. Ciência e Agrotecnologia, 29(6):1281-1287.
De Carvalho, A., Tombolato, A., Rodrigues, A.D.J., and Silva, F.D. (2013). Panorama da cultura de tecidos no Brasil com ênfase em flores e plantas ornamentais. Embrapa Agroindústria Tropical-Capítulo em livro científico
De Jesús Romo-Paz, F., Folgado, R., Delgado-Aceves, L., Zamora-Natera, J.F., and Portillo, L. (2021). Tissue culture of Physalis angulata L.(Solanaceae): techniques for micropropagation and germplasm long-term preservation. Plant Cell, Tissue and Organ Culture (PCTOC), 144(1):73-78.
Grattapaglia, D., and Machado, M.A. (1998). micropropagação. Cultura de tecidos e transformação genética de plantas, 1:183-260.
Jahirhussain, G., Parvathi, S., Tamilselvan, V., Muniappan, V., Deepa, K., and Veerappan, R. (2016). In vitro Shoot multiplication of Physalis minima L.-an important Medicinal Herb. Journal of Advanced Applied Scientific Research, 1(3):49-88.
Kadirova, Z., Shokhista, T., Dilbar, D., Rano, M., and Gulchehra, S. (2019). Micropropagation of the medicinal plant Physalis alkekengi. National Journal of Physiology, Pharmacy and Pharmacology, 9(8):809-812.
Kazemiani, S., Motallebi-Azar, A.R., Panahandeh, J., Mokhtarzadeh, S., and Ozdemir, F.A. (2018). Shoot proliferation from potato (Solanum tuberosum cv. Agria) under different concentration of MS include vitamins and BAP medium. Progress in Nutrition, 20(1):160-166.
Mascarenhas, L.M.S., Santana, J.R.F.D., and Brito, A.L. (2019). Micropropagation of Physalis peruviana L. Pesquisa Agropecuária Tropical, 49.
Muniz, J., Marchi, T., Coldebella, M. C., Rufato, L., and Kretzschmar, A.A. (2015). Crescimento vegetativo e potencial produtivo de fisális. Revista de Ciências Agroveterinárias, 14(1):15-23.
Puente, L.A., Pinto-Muñoz, C.A., Castro, E.S., and Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7):1733-1740.
Ramar, K., Ayyadurai, V., and Arulprakash, T. (2014). In vitro shoot multiplication and plant regeneration of Physalis peruviana L. an important medicinal plant. International Journal of Current Microbiology and Applied Sciences, 3(3):456-464.
Rezanejad, F., and Hosseini, A. (2019). The effect of growth factors on direct micropropagation of Physalis alkekengi L.(Solanaceae) through buds and stems explants to transfer to the greenhouse and flowering phase. Modares Journal of Biotechnology, 10(3(
Rodrigues, F.A., Dos Santos Penoni, E., Soares, J.D.R., and Pasqual, M. (2013a). Diferentes concentrações de sais do meio ms e bap na multiplicação in vitro de Physalis peruviana L. Bioscience Journal.
Rodrigues, F.A., Dos Santos Penoni, E., Soares, J.D.R., and Pasqual, M. (2013b). Different concentrations of ms and bap medium salts in the in vitro multiplication of Physalis peruviana L. Bioscience Journal.
Rout, G., Mohapatra, A., and Jain, S.M. (2006). Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnology advances, 24(6):531-560.
Shah, F. A. (2018). In Vitro Shoot Multiplication and Plant Regeneration of Physalis peruviana L. An Important Medicinal Plant Harvested at IIIM Jammu (J&K). american journal of pharmtech research, 8(6):6.
Velasquez, H.J.C., Giraldo, O.H.B., and Arango, S.A.P. (2007). Estudio preliminar de la resistencia mecánica a la fractura y fuerza de firmeza para fruta de uchuva (Physalis peruviana L.). Revista Facultad Nacional de Agronomía-Medellín, 60(1):3785-3796.
Whitson, M., and Manos, P.S. (2005). Untangling Physalis (Solanaceae) from the Physaloids: a two-gene phylogeny of the Physalinae. Systematic Botany, 30(1):216-230.
Yucesan, B.B., Mohammed, A., Arslan, M., and GÜREL, E. (2015). Clonal propagation and synthetic seed production from nodal segments ofCape gooseberry (Physalis peruviana L.), a tropical fruit plant. Turkish Journal of Agriculture and Forestry, 39(5):797-806.
_||_
Chaves, A.D.C., Schuch, M.W., and Erig, A.C. (2005). Estabelecimento e multiplicação in vitro de Physalis peruviana L. Ciência e Agrotecnologia, 29(6):1281-1287.
De Carvalho, A., Tombolato, A., Rodrigues, A.D.J., and Silva, F.D. (2013). Panorama da cultura de tecidos no Brasil com ênfase em flores e plantas ornamentais. Embrapa Agroindústria Tropical-Capítulo em livro científico
De Jesús Romo-Paz, F., Folgado, R., Delgado-Aceves, L., Zamora-Natera, J.F., and Portillo, L. (2021). Tissue culture of Physalis angulata L.(Solanaceae): techniques for micropropagation and germplasm long-term preservation. Plant Cell, Tissue and Organ Culture (PCTOC), 144(1):73-78.
Grattapaglia, D., and Machado, M.A. (1998). micropropagação. Cultura de tecidos e transformação genética de plantas, 1:183-260.
Jahirhussain, G., Parvathi, S., Tamilselvan, V., Muniappan, V., Deepa, K., and Veerappan, R. (2016). In vitro Shoot multiplication of Physalis minima L.-an important Medicinal Herb. Journal of Advanced Applied Scientific Research, 1(3):49-88.
Kadirova, Z., Shokhista, T., Dilbar, D., Rano, M., and Gulchehra, S. (2019). Micropropagation of the medicinal plant Physalis alkekengi. National Journal of Physiology, Pharmacy and Pharmacology, 9(8):809-812.
Kazemiani, S., Motallebi-Azar, A.R., Panahandeh, J., Mokhtarzadeh, S., and Ozdemir, F.A. (2018). Shoot proliferation from potato (Solanum tuberosum cv. Agria) under different concentration of MS include vitamins and BAP medium. Progress in Nutrition, 20(1):160-166.
Mascarenhas, L.M.S., Santana, J.R.F.D., and Brito, A.L. (2019). Micropropagation of Physalis peruviana L. Pesquisa Agropecuária Tropical, 49.
Muniz, J., Marchi, T., Coldebella, M. C., Rufato, L., and Kretzschmar, A.A. (2015). Crescimento vegetativo e potencial produtivo de fisális. Revista de Ciências Agroveterinárias, 14(1):15-23.
Puente, L.A., Pinto-Muñoz, C.A., Castro, E.S., and Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7):1733-1740.
Ramar, K., Ayyadurai, V., and Arulprakash, T. (2014). In vitro shoot multiplication and plant regeneration of Physalis peruviana L. an important medicinal plant. International Journal of Current Microbiology and Applied Sciences, 3(3):456-464.
Rezanejad, F., and Hosseini, A. (2019). The effect of growth factors on direct micropropagation of Physalis alkekengi L.(Solanaceae) through buds and stems explants to transfer to the greenhouse and flowering phase. Modares Journal of Biotechnology, 10(3(
Rodrigues, F.A., Dos Santos Penoni, E., Soares, J.D.R., and Pasqual, M. (2013a). Diferentes concentrações de sais do meio ms e bap na multiplicação in vitro de Physalis peruviana L. Bioscience Journal.
Rodrigues, F.A., Dos Santos Penoni, E., Soares, J.D.R., and Pasqual, M. (2013b). Different concentrations of ms and bap medium salts in the in vitro multiplication of Physalis peruviana L. Bioscience Journal.
Rout, G., Mohapatra, A., and Jain, S.M. (2006). Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnology advances, 24(6):531-560.
Shah, F. A. (2018). In Vitro Shoot Multiplication and Plant Regeneration of Physalis peruviana L. An Important Medicinal Plant Harvested at IIIM Jammu (J&K). american journal of pharmtech research, 8(6):6.
Velasquez, H.J.C., Giraldo, O.H.B., and Arango, S.A.P. (2007). Estudio preliminar de la resistencia mecánica a la fractura y fuerza de firmeza para fruta de uchuva (Physalis peruviana L.). Revista Facultad Nacional de Agronomía-Medellín, 60(1):3785-3796.
Whitson, M., and Manos, P.S. (2005). Untangling Physalis (Solanaceae) from the Physaloids: a two-gene phylogeny of the Physalinae. Systematic Botany, 30(1):216-230.
Yucesan, B.B., Mohammed, A., Arslan, M., and GÜREL, E. (2015). Clonal propagation and synthetic seed production from nodal segments ofCape gooseberry (Physalis peruviana L.), a tropical fruit plant. Turkish Journal of Agriculture and Forestry, 39(5):797-806.