تاثیر کیفیت نورمصنوعی بر رشد و ارزش غذایی ریزسبزی کلم بروکلی (var. italica. Brassica oleracea L)
محورهای موضوعی : گیاهان داروییمحدثه مقیمی کندلوسی 1 , حسین مرادی 2 * , کامران قاسمی 3 , سیدحمیدرضا هاشمی پطرودی 4
1 - گیاهان دارویی، واحد ساری، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی، ساری، ایران
2 - گروه علوم باغبانی، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری،ساری، ایران
3 - گروه علوم باغبانی، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری،ایران
4 - پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
کلید واژه: آنتی اکسیدان, تابش, فتوسنتز, کلروفیل, کاروتنوئید, گیاه دارویی, مواد مؤثره,
چکیده مقاله :
به منظور بررسی تأثیر کیفیت نور مصنوعی بر رشد و ارزش غذایی ریزسبزی(microgreens کلمبروکلی (Brassica oleracea var. italica) پژوهشی بصورت فاکتوریل با دو فاکتور برپایه طرح کاملاً تصادفی در سه تکرار انجام شد. فاکتور اول در چهار سطح نوری با شدت نور 250 میکرومول بر متر مربع بر ثانیه(نورقرمز 660 نانومتر و نورآبی 440 نانومتر بصورت: R1B1: یک لامپ قرمز، یک لامپ آبی، R2B1: دولامپ قرمز یک لامپ آبی، R1B2: یک لامپ قرمز دولامپ آبی، R3B1: سه لامپ قرمز یک لامپ آبی) اعمال گردید. فاکتور دوم نیز زمان برداشت محصول بوده که در دو سطح ده روز پس از جوانه زنی(D1) و چهارده روز پس از جوانهزنی(D2) در نظرگرفته شد. مدت زمان روشنایی و تاریکی در محل پرورش گیاه به نسبت 8/16(تاریکی/روشنایی) بود. صفات اندازهگیری شده شامل وزنتر، وزن خشک، طول ساقهچه، طول برگ لپهای، عرض برگ لپهای و مقدار فنل، فلاونویید، درصد مهار رادیکال آزاد، کلروفیلa وb، کل و کارتنویید بودند. نتایج نشان داد بیشترین مقدار آنتیاکسیدان در تیمار اثر متقابل R3B1وD1 به مقدار737/72 درصد مهار مشاهده شد. از بین رنگیزههای فتوسنتری اثر متقابل تیمارها فقط بر کلروفیل b، در سطح احتمال 5 درصد معنیدار شد بطوریکه بیشترین مقدار کلروفیلb. در تیمار R2B1D1 به مقدار 224/0میلی گرم در گرم برگ تازه بدست آمد. همچنین اثر متقابل تیمارها بر مقدار ترکیبات فنلی در سطح یک درصد معنیدار شد و بیشترین مقدار فنل کل در تیمار R2B1D1 به مقدار 006/1 میلیگرم برگرم نشان داده شد. بیشترین مقدار فلاونوییدها نیز در برداشت روز دهم به مقدار023/0 میلیگرم درگرم برگ تازه بدست آمد. از بین صفات مورفولوژیک، کیفیت نور روی طول برگ لپهای تأثیرگذار نبود اما اثر معنیداری را بر عرض برگ لپهای نشان داد. بنابراین طبق نتایج حاصل شده باتوجه به اهداف مورد نظر میتوان از تیمارهای مختلف استفاده کرد.
Microgreens are defined as plants that harvest and consume in the first stages of true leaf growth when the cotyledon leaves are fully expanded. The increasing emphasis on improving the health level of the society has caused the products with high nutritional value and functional food to be considered very important. And in the future, nutritional agricultural products can find a special place in the food basket of the society. Therefore, in this research, the effect of the light spectrum and sulfur element nutrition for the production of sulfur-friendly microgreens such as broccoli has been studied in order to achieve a suitable combination treatment to increase both yield and nutritional value. This experiment was conducted as a factorial in the form of a completely randomized design with two factors and four replications under artificial light. The first factor, i.e. light spectrum, was investigated at four levels and the second factor, nutrition, harvest time at two levels (10 and 14 days). The light treatments included different ratios of red (R) and blue (B) light (R1B2, R1B1, R2B1, R3B1). The evaluated traits included morphological traits, biomass, photosynthetic pigments, total antioxidant, total phenol and total flavonoid. Statistical analysis of data was done using SAS 9.1 software and comparison of averages . The lowest amount of dry weight produced was obtained in R1B2 treatment, which was not significantly different from R1B1, but it was significantly lower than R2B1 and R3B1 treatments. Although the light quality did not affect the length of the cotyledon leaf, it had a significant effect on the width of the cotyledon leaf; So that the lowest cotyledon leaf width was seen in the R1B2 treatment, which was significantly less than the other three light treatments. R1B2 treatment produced the lowest stem length, the difference with R1B1 was not significant, but it was significantly lower than the two treatments R2B1 and R3B1, which had dominant red light. The highest amount of chlorophyll b was obtained in R2B1 light treatment and harvesting on the 10th day, but in other light ratios where the amount of red light was increased or decreased, the amount of chlorophyll b also decreased. In chlorophyll a and total chlorophyll, which were only affected by the time of harvest, the amount of these two indicators was significantly higher on the 10th day than on the 14th day. Investigating the effect of light quality on the amount of carotenoids showed that R1B2 treatment, where the amount of blue light was predominant, the amount of this pigment was significantly lower than other light treatments. The lowest amount of total antioxidant activity was observed in the 10th day harvest and in R1B2 light treatment, which was significantly lower than all other treatments. The amount of total phenol in R2B1 light treatment with dominant red light and harvested on the 10th day was significantly higher than other treatments. The simple effect of harvesting time on the amount of total flavonoids was significant and its amount was significantly higher on the seventh day than on the tenth day. Overall, the results show that LED light with red light spectrum has a better effect on some traits, so different light combinations can be used depending on the producer's goal.
Abbasi, B. H., Tian, C. L., Murch S. J., Saxena, P. K and Liu, C. Z. (2007). Light enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea. Plant cell reports. 26(8): 1367-1372.
Abou El-Dis, G. R., Zavdetovna, K. L., Nikolaevich, A. A., Abdelazeez, W. M. A and Arnoldovna, T. O. (2021). Influence of light on the accumulation of anthocyanins in callus culture of Vaccinium corymbosum L. cv. Sunt Blue Giant. Journal of Photochemistry and Photobiology. 8: 100058.
Ahmad, N., Abbasi, B. H., Fazal, H., Khan, M. A and Afridi, M. S. (2014). Effect of reverse photoperiod on in vitro regeneration and piperine production in Piper nigrum L. Comptes rendus biologies. 337(1): 19-28.
Alrifai, O., Hao, X., Marcone, M. F and Tsao, R. (2019). Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables. Journal of agricultural and food chemistry. 67(22): 6075-6090.
Arnon, A. N.(1967). Method of extraction of chlorophyll in the plants. Agronomy Journal. 23:112-121
Brazaityte, A., Sakalauskiene, S., Samuolien, G., Jankauskien, J., Virsile, A., Novickovas, A., Sirtautas, R., Miliauskiene, J., Vastakaite, V., Dabasinskas, L and Duchovskis, P. (2015). The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceaemicrogreens. Journal Agriclture Food Chemistery. 173: 600-606.
Brazaityte, A.S., Sakalauskiene, A., Virsile, J., Jankauskiene, G., Samuoliene, R., Sirtautas, V., Vastakaite, J., Miliauskiene, P., Duchovskis, A., Novickovas and Dabasinskas, L. (2016). The effect of short term red lighting on Brassicaceae microgreens grown indoors .Acta Horticulturae. 1123:177-184.
Chung, Y. C., Chang, C. T., Chao, W. W., Lin, C. F and Chou, S. T. (2002). Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. Journal of agricultural and food chemistry. 50(8): 2454-2458.
Darko, E., Heydarizadeh, P., Schoefs, B and Sabzalian, M. R.(2014). Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philos. Philosophical Transactions of the Royal Society B: Biological Sciences. 369: 20130243.
Davis, P.A and Burns, C.(2016). Photobiology in protected horticulture. Food Energy Secur. 5: 223–238.
Dayani, S., Heydarizadeh, P and Sabzalian, M. R. (2016). Handbook of Photosynthesis. CRC press. Florida.
De Leo, F and Gallerani, R. (2002). The mustard trypsin inhibitor 2 affects the fertility of Spodoptera littoralis larvae fed on transgenic plants. Insect Biochemistry and Molecular Biology. 32(5): 489-496.
Demmig-Adams, B., Gilmore, A. M and Adams, W.W. (1996). In vivo functions of carotenoids in higher plants. Faseb Journal. 10: 403–412.
Dou, H., Niu, G., Gu, M and Masabni, J. (2017). Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae. 3, 36.
Ebrahimzadeh, M. A., Nabavi, S. F and Nabavi, S. M. (2009). Antioxidant activity of leaves and inflorescence of Eryngium Caucasicum Trautv at flowering stage. Pharmacognocy Research. 1(6): 435-439.
Elah Dadi, M and Musharraf Borojni, L. (2019). Investigating the effect of harvesting time on some phytochemical characteristics of medicinal plant leaves(Cynara scolymus L.). Ecophytochemistry of medicinal plants. 6(4): 40-54.
Esteban, R., Barrutia, O., Artetxe, U., Fernandez Marin, B., Hernandez, A and Garcia Plazaola, J. I. (2015). Internal and external factors affecting photosynthetic pigment composition in plants: a meta‐analytical approach. New Phytologist. 206(1): 268-280.
Ferreyra, M. L. F., Serra, P and Casati, P. (2021). Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. Physiologia plantarum. 173(3): 736-749.
Gao, M., He, R., Shi, R., Zhang, Y., Song, S., Su, W., and Liu, H. (2021). Differential Effects of Low Light Intensity on Broccoli Microgreens Growth and Phytochemicals. Agronomy. 11(3): 537.
Goto, E.(2012). Plant production in a closed plant factory with artificial lighting. Acta Horticultural. 956: 37–49.
Guo, L., Yang, R., Wang, Z ., Guo. Q and Gu, Z. (2014). Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organs. journal of functional foods. 9: 70–77.
Hajiboland, R and Farhangi, F. (2010). Growth, leaf pigments and photosynthesis of Brassica rapa under Boron element deficiency and different light intensities. Sciences, University of Tehran.(36):18.
Jafarpoor, F., Bakhshi, D., Ghasemnezhad, M and Sajedi, R. (2014). The effect of putrescine on post-harvest quality. phenolic compounds and antioxidant capacity of Brassica oleracea var. italica florets. Journal of Horticultural Sciences. (3): 303-311.
Jain, M ., Mathur, G ., Koul S and Sarin N. B. (2001). Ameliorative effects of proline on salt stress induced lipid peroxidation in cell lines of groundnut(Arachis hypoeal L.). Plant Cell Reports. 20: 463-468.
Johkan, M., Shoji, K., Goto, F., Hashida, S and Yoshihara, T. (2010). Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience. 45(12):1809−1814.
Kaneko, K. O., Takase, M., Kon, N., Fujiwara, K and Kurata, K. (2007). Effect of light Quality on Growth and vegetable Quality in Leaf Lettuce,Spinach and Komatsuna.Envinmental Control Biol. 45(3): 189-198.
Kays, S. J. (1991). Postharvest physiology of perishable plant products. Van Nostrand Reinhold Publ. New York. 335 pp.
Kim S. J., Hahn E. J., Heo J. W. and Paek K. Y.(2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae. 101(1-2): 143-151.
Kim, K., Kook, H. S., Jang, Y. J., Lee, W. H., Kamala-Kannan, S., Chae, J. C and Lee, K. J. (2013). The effect of blue-light-emitting diodes on antioxidant properties and resistance to Botrytis cinerea in tomato. Journal Plant Pathol Microbiol. 4(9).
Kopsell, D. A and Sams C E. (2013). Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. Journal of the American Society for Horticultural Science. 138: 31–37.
Kopsell, D. A., Sams, C. E and Morrow, R. C. (2015). Blue wavelengths from led lighting increase nutritionally important metabolites in specialty crops. HortScience. 50 (9): 1285−1288.
Kreuzaler, F and Hahlbrock, K. (1973). Flavonoid glycosides from illuminated cell suspension cultures of Petroselinum hortense. Phytochemistry. 12(5): 1149-1152.
Lee, S. W., Seo, J. M., Lee, M. K., Chun, J. H., Antonisamy, P., Arasu, M. V., Suzuki, T., Naif Al-Dhabi, A and Kim, S. J. (2014). Influence of different LED lamps on the production of phenolic compounds in common and tartary buckwheat sprouts. Industrial Crops and Products. 54: 320–326.
Lesfrud, M. G, Kopsell, D. A and Sams C E. (2008). Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience. 43: 2243–2244.
Lesfrud, M. G., Kopsell, D. A and Curran-Celentano, J. (2006). Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment. Physiologycal Plant. 127: 624–631.
Li, H., Tang, C., Xu, Z., Liu, X and Han, X. (2012). Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L). Journal of Agricultural Science. 4: 262.
Li, H., Xu, Z and Tang, C. (2010). Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell, Tissue and Organ Culture (PCTOC). 103(2): 155-163.
Li, Q and Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany. 67(1): 59−64.
Liu, H., Chen, Y., Hu, T., Zhang, S., Zhang, Y., Zhao, T ., Yu, H and Kang, Y. (2016). The influence of light emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. Journal of functional foods. 25: 459-465.
Lobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O and Zamfirache, M.-M. (2017(. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic (Ocimum basilicum L.) Microgreens. Molecules. 22(12): 2111.
Magd, M., Mahmoud, A. R., Hafiz, M and Ali, A. H.)2013(. Effect of different levels of mineral phosphorus fertilizer and bio-phosphorus on vegetative growth, head yield and quality of broccoli. Research Journal of Agriculture and Biological Sciences. 9(5): 164-169.
Mates, J. M.(2000). Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 153(1-3): 83-104.
Mohajeri, D and Aghamohamadi, J. (2014). Experimental study of the inhibitory effect of broccoli ethanol extract on cancer induced by 4-nitroquinolone-1-oxide in Syrian rat's mouth. Comparative pathobiology of Iran. (2): 1311-1320.
Mohr, H., Drumm-Herrel, H and Oelmuller, R. (1984). Coaction of phytochrome and blue/UV light photoreceptors. In Blue Light Effects in Biological Systems. Springer, Berlin, Heidelberg . pp. 6–19.
Muneer, S., Kim, E.J., Park, J.S and Lee, J. H. (2014). Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). International journal of molecular sciences. 15: 4657–4670.
Nam, T. G., Kim, D. O and Eom, S. H. (2018). Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts. Food Science and Biotechnology. 27(1): 169-176.
Park, C.H., Park, Y. E., Yeo, H. J., Kim, J. K and Park, S.U. (2020). Effects of Light-Emitting Diodes on the Accumulation of Phenolic Compounds and Glucosinolates in Brassica juncea Sprouts. Horticulturae. 6(4): 77.
Pereira, F. M. V., Rosa, E,. Fahey, J. W., Stephenson, K. K., Carvalho, R and Aires, A. (2002). Influence of temperature and ontogeny on the levels of glucosinolates in broccoli(Brassica oleracea var.italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. Journal of Agricultural and Food Chemistry. 50(21): 6239-6244.
Samuoliene, G., Sirtautas, R., Brazaityte, A and Duchovskis, P. (2012). LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chemistery. 134: 1494- 499.
Schiefthaler, U., Russell, A. W., Bolhar Nordenkampf, H. R and Critchley, C. (1999). Photoregulation and photodamage in Schefflera arboricola leaves adapted to different light environments. Plant Physiology. 26: 485-494.
Schwartz, A and Zeiger, E. (1984). Metabolic energy for stomatal opening. Roles of photophosphorylation and oxidative phosphorylation. Planta. 161: 129-136.
Seo, J. M., Arasu, M. V., Kim, Y. B., Park, S. U and Kim, S. J.(2015). Phenylalanine and LED lights enhance phenolic compound production in tartary buckwheat sprouts. Food Chemistry. 77: 204-213.
Shirvani, A., Goli, S. a. H., Shahedi, M and Soleimanian-Zad, S.(2016). Changes in nutritional value and application of thyme (Thymus vulgaris) essential oil on microbial and organoleptic markers of Persian clover (Trifolium resupinatum) sprouts. Food Scince Technology. 67: 14-21.
Simkin, A. J., Kapoor, L., Doss, C. G. P., Hofmann, T. A., Lawson, T and Ramamoorthy, S.(2022). The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynthesis Research. 152(1): 23-42.
Slinkard, K and Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American journal of enology and viticulture. 28(1): 49-55.
Son, K. H and Oh, M. M. (2013). Leaf shape growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience. 48: 988- 995.
Son, K. H., Lee, J. H., Oh, Y., Kim, D., Oh, M. M and In, B. C. (2017). Growth and bioactive compound synthesis in cultivated lettuce subject to light-quality changes. HortScience. 52: 584–591.
Taiz, L and Zieger, E. (2002). Plant Physiology. 5th Ed. Sinauer Associates.
Wang, P and Bernhard, G. (2021). "Connecting chlorophyll metabolism with accumulation of the photosynthetic apparatus."Trends in plant science. 26(5): 484-495.
Wu, M., Hou, C., Jiang, C., Wang, Y., Wang, C., Chen, H and Chang, H. (2007) .A novel approach of LED light radiation improves the antioxidant activity of pea seedlings . Food Chemistry. 101: 1753-1758.
Xiao, Z., Lester, E., Luo, Y and Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products:Edible microgreens. Journal Agriculture Food Chemistery, 60: 7644–765.
Zhang, X., Bian, Z., Yuan, X., Chen, X and Lu C. (2020). A review on the effects of light emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Science Technology. 99: 203-216.
Zhang, Zhi. (2021). Effects of Maturity Stages and Growing Conditions on Phytochemical Profile and Antioxidant Ability of Brassica Vegetables. MS thesis. University of Maryland, College Park.
Zhao, J. L., Zou, L., Zhong, L. Y., Peng, L.X., Ying, P. L., Tan, M. L and Zhao, G. (2015). Effects of polysaccharide elicitors from endophytic Bionectria pityrodes Fat6 on the growth and flavonoid production in tartary buckwheat sprout cultures. Cereal Res Commun. 43: 661–671.