غربال ژنوتیپهای مختلف نیشکر (Saccharum ssp L.) مقاوم به سرما با استفاده از شاخصهای مورفولوژی و بیوشیمیایی
محورهای موضوعی : ژنتیکمحمود فولادوند 1 * , آسا ابراهیمی 2 , مهدی رهایی 3 , وحید شریعتی جونی 4
1 - گروه بیوتکنولوژی و بهنژادی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه بیوتکنولوژی و بهنژادی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه مهندسی علوم زیستی، دانشکده علوم و فنون نوین، دانشگاه تهران، ایران
4 - گروه زیست فناوری مولکولی گیاهی، پژوهشگاه ملی مهندسی ژنتیک و زیست فنآوری، تهران، ایران
کلید واژه: تنش سرما, مقاومت به سرما, : نیشکر, غربال مورفولوژیکی, شاخص بیوشیمیایی,
چکیده مقاله :
نیشکر گیاهی است که تا مدار حدود 32 درجه شمالی و جنوبی در نقاط مختلف جهان کشت می گردد. مقاومت این گیاه نسبت به سرما پایین است. با توجه به حساسیت نیشکر به سرما، به منظور شناسایی مسیرها و ژنهای دارای بیان افتراقی در ارقام نیشکر در هنگام تنش سرما و استفاده از آنها در برنامه اصلاح نبات نیشکر، پس از وقوع سرمای ᴏC2/1 زیر صفر در دیماه 1394، تعداد 454 رقم نیشکر با استفاده از شاخص های مورفولوژیکی و بیوشیمیایی، در یکی از مزارع تحقیقاتی موسسه تحقیقات نیشکر خوزستان مورد بررسی قرار گرفت. در مرحله اول با استفاده از شاخص های مورفولوژی، ارقام متحمل و حساس در برابر سرما انتخاب شدند. در مرحله دوم در سال 1395، پس از تنش سرما، شاخصهای بیوشیمیایی از قبیل پرولین( Prolin) و مالون دی آلدئید (MDA )، در ارقام متحمل(منتخب مرحله اول)، افزایش بیشتری پیدا کرد و بر اساس نتایج دو مرحله، دو رقم BR00-01 وTUC66-107 بهترتیب بهعنوان متحمل ترین و حساسترین رقم نسبت به سرما شناسایی شدند. نتایج بررسی واکنش مورفولوژی و بیوشیمیایی ارقام نیشکر به تنش سرما نشان داد که ارقامی که طبق شاخص های مورفولوژیکی، میزان تحمل بیشتری به تنش سرما دارند، همین ارقام در مرحله بررسی بیوشیمیایی نیز از نظر میزان پرولین (Prolin) و مالون دی آلدئید (MDA) در سطح بالاتری نسبت به ارقام حساس قرار دارند. همچنین همبستگی بالایی بین صفات مورفولوژیکی و شاخص های بیوشیمیایی از نظر میزان تحمل و مقاومت به سرما وجود داشت. بنابراین، با استفاده از اندازه گیری شاخص های مورفولوژیکی و بیوشیمیایی، می توان پیش از انجام بررسی مولکولی و بدون صرف هزینه های زیاد، نوع واکنش ارقام نیشکر به تنش سرما را بررسی نمود و در هنگام غربال کلون های نیشکر در مراحل مختلف اصلاحی، با اندازه گیری مقدار شاخص های مورفولوژی و بیوشیمیایی نیشکر در هنگام تنش سرما، نسبت به غربال و انتخاب کلون های برتر اقدام نمود.
Sugarcane is cultivated in different parts of the world up to a latitude of about 32 degrees north and south. The resistance of this plant to cold is low. Considering the sensitivity of sugarcane to cold, in order to identify the pathways and genes by differential expression in sugarcane cultivars during cold stress and employ them in sugarcane plant breeding programs, 454 sugarcanes were investigated using morphological and biochemical indices, in the Research Farm of Khuzestan Sugarcane Research Institute following the incidence of -1.2 ℃ temperature in the region in December 2015. In the first stage, the cold-tolerant or sensitive cultivars were selected using morphological indices. In the second stage, biochemical indices such as proline and malondialdehyde were measured in the tolerant cultivars (selected at the first stage) after a cold stress period in 2016, which showed increases in comparison with susceptible cultivars. According to the data obtained at the two stages, two cultivars, namely BR00-01 and TUC66-107, were identified as the most tolerant and sensitive to cold, respectively. Based on the results of morphological studies, the cultivars with a higher tolerance to cold stress were also hose with higher proline and MDA levels in the biochemical study stage compared with the sensitive cultivars. There was also a high correlation between morphological traits and biochemical indicators in terms of cold resistance. Therefore, by measuring morphological and biochemical indices, it is possible to determine to a large extent the type of reaction of a sugarcane cultivar to cold stress before doing molecular analysis and spending huge sums of money, and to select superior clones when sifting sugarcane clones at different breeding stages.
A group of researchers (2010). Final report of the cold project in sugarcane, Sugarcane Research and Training Institute of Khuzestan.
Bates, L.S., Waldern, R.P and Tear, ID. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207
Gururaj, Hansigi. (2001). "Sugarcane Agriculture", Translated by Bahram Mirashkari, Tabriz, Islamic Azad University, Tabriz Branch.
Mantri, N.L., Ford, R., Coram, T.E and Pang, E.C.K. (2007). Transcriptional profiling of chickpea genes, BMC Genomics Journal, 8:303-307
Patrick, F., Murilo, P., Florian, B., Daniel, Johnson and Rowan, S. (2014). Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates. Journal of Experimental Botany, 13: 3749–3758
Park, J-W., Benatti, T.R., Marconi, T., Yu, Q., Solis-Gracia, N. and Mora, V. (2015). Cold Responsive Gene Expression Profiling of Sugarcane and Saccharum spontaneum with Functional Analysis of a Cold Inducible Saccharum Homolog of NOD26- Like Intrinsic Protein to Salt and Water Stress. PloS ONE 10(5): 125- 132
Kim, J.C., Lee, S.H., Cheong, Y.H., Yoo, C-M., Lee, S.I., Chun, H.J., Yun, D-J., Hong, J.C., Lee, S.Y., Lim, CO. (2001). A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant Journal 25 : 247–259.
Rafaela, Queiroz., Maria, Durvalina., Sergio, Antonio., Domingues, Samira., Marcelo, Carlin. (2011). Biochemical and physiological responses of sugarcane cultivars to soil water deficiencies, Sci. Agric Journal. (Piracicaba, Braz.), 4: 469-476.
Robert, RC. and Bewlery, JD. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology Journal, 65: 245–248.
Teulate, B., Monneveux, P.J., Borrieres, C., Souyrus, I., Charri, A. and This, D. (1997). Relationshipes between relative water content and growth parameters and water stress in barley, a QTL study. New Physiology Journal, 137: 99-107.
Valentovic, P., M, Luxova., L, Kolarovi and O, Gasparikora. (2006). Effect of osmotic stress on compatible solutes content, memberane stability and water relation in two maizes. Plant Soil Environment Journal. 52 (4):186-191.
Heinz, Don J. (1987). Sugarcane Improvement through Breeding, Hawaiian sugar planters Association New York, Amsterdam, Elsevier Publications
Rahimizadeh, M., Habibi, D., Madani, H., Mohammadi, H., Mehraban, A. and Sabet, A.M. (2007). The effect of micronutrients on antioxidant enzymes metabolism in sunflower (Helianthus annuus L.) under drought stress. Helia Journal, 47: 167-174.
Reinhart, BJ., Weinstein, EG., Rhoades, MW., Bartel, B. and Bartel, DP. (2002). MicroRNAs in plants. Genes Dev 16: 1616–1626.
Li, B., Duan, H., Li, J., Deng, XW., Yin, W. and Xia, X. (2013). Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol Journal, 81(6): 525–539.
Zhang, M.Q., Chen, RK and Lu, J.L. (1999). Effects of low temperature stress on the chlorophyll a fluorescence induction kinetics in the seedling of sugarcane. Fujian Agricultural University Journal, (Science & Technology Edition) 28(1): 1–7.
Jiang, M.Y., Guo, S.Q. and Zhang, X.M. (1997). Proline accumulation in rice seedlings exposed to oxidative stress in relation to autoxidation. Acta Phytophysiolica Sinica Journal, 23(4): 347–352.
Huang, SQ., Xiang, AL., Che, LL., Chen, S., Li, H., Song, JB. and Yang, ZM. (2010). A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol Journal, 8: 887–899.
Chen, L., Zhang, Y., Ren, Y., Xu, J., Zhang, Z., and Wang, Y. (2012). Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun Journal, 417: 892–896.
Zhou, SM., Kong, XZ., Kang, HH., Sun, X-D. and Wang, W. (2015). The Involvement of Wheat F-box Protein Gene TaFBA1 in the Oxidative Stress Tolerance of Plants. PLoS ONE Journal, 10(4): 117-127.
_||_
A group of researchers (2010). Final report of the cold project in sugarcane, Sugarcane Research and Training Institute of Khuzestan.
Bates, L.S., Waldern, R.P and Tear, ID. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207
Gururaj, Hansigi. (2001). "Sugarcane Agriculture", Translated by Bahram Mirashkari, Tabriz, Islamic Azad University, Tabriz Branch.
Mantri, N.L., Ford, R., Coram, T.E and Pang, E.C.K. (2007). Transcriptional profiling of chickpea genes, BMC Genomics Journal, 8:303-307
Patrick, F., Murilo, P., Florian, B., Daniel, Johnson and Rowan, S. (2014). Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates. Journal of Experimental Botany, 13: 3749–3758
Park, J-W., Benatti, T.R., Marconi, T., Yu, Q., Solis-Gracia, N. and Mora, V. (2015). Cold Responsive Gene Expression Profiling of Sugarcane and Saccharum spontaneum with Functional Analysis of a Cold Inducible Saccharum Homolog of NOD26- Like Intrinsic Protein to Salt and Water Stress. PloS ONE 10(5): 125- 132
Kim, J.C., Lee, S.H., Cheong, Y.H., Yoo, C-M., Lee, S.I., Chun, H.J., Yun, D-J., Hong, J.C., Lee, S.Y., Lim, CO. (2001). A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant Journal 25 : 247–259.
Rafaela, Queiroz., Maria, Durvalina., Sergio, Antonio., Domingues, Samira., Marcelo, Carlin. (2011). Biochemical and physiological responses of sugarcane cultivars to soil water deficiencies, Sci. Agric Journal. (Piracicaba, Braz.), 4: 469-476.
Robert, RC. and Bewlery, JD. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology Journal, 65: 245–248.
Teulate, B., Monneveux, P.J., Borrieres, C., Souyrus, I., Charri, A. and This, D. (1997). Relationshipes between relative water content and growth parameters and water stress in barley, a QTL study. New Physiology Journal, 137: 99-107.
Valentovic, P., M, Luxova., L, Kolarovi and O, Gasparikora. (2006). Effect of osmotic stress on compatible solutes content, memberane stability and water relation in two maizes. Plant Soil Environment Journal. 52 (4):186-191.
Heinz, Don J. (1987). Sugarcane Improvement through Breeding, Hawaiian sugar planters Association New York, Amsterdam, Elsevier Publications
Rahimizadeh, M., Habibi, D., Madani, H., Mohammadi, H., Mehraban, A. and Sabet, A.M. (2007). The effect of micronutrients on antioxidant enzymes metabolism in sunflower (Helianthus annuus L.) under drought stress. Helia Journal, 47: 167-174.
Reinhart, BJ., Weinstein, EG., Rhoades, MW., Bartel, B. and Bartel, DP. (2002). MicroRNAs in plants. Genes Dev 16: 1616–1626.
Li, B., Duan, H., Li, J., Deng, XW., Yin, W. and Xia, X. (2013). Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol Journal, 81(6): 525–539.
Zhang, M.Q., Chen, RK and Lu, J.L. (1999). Effects of low temperature stress on the chlorophyll a fluorescence induction kinetics in the seedling of sugarcane. Fujian Agricultural University Journal, (Science & Technology Edition) 28(1): 1–7.
Jiang, M.Y., Guo, S.Q. and Zhang, X.M. (1997). Proline accumulation in rice seedlings exposed to oxidative stress in relation to autoxidation. Acta Phytophysiolica Sinica Journal, 23(4): 347–352.
Huang, SQ., Xiang, AL., Che, LL., Chen, S., Li, H., Song, JB. and Yang, ZM. (2010). A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol Journal, 8: 887–899.
Chen, L., Zhang, Y., Ren, Y., Xu, J., Zhang, Z., and Wang, Y. (2012). Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun Journal, 417: 892–896.
Zhou, SM., Kong, XZ., Kang, HH., Sun, X-D. and Wang, W. (2015). The Involvement of Wheat F-box Protein Gene TaFBA1 in the Oxidative Stress Tolerance of Plants. PLoS ONE Journal, 10(4): 117-127.