برهم¬کنش تنش شوری و نانوذره کیتوزان بر روی برخی از خصوصیات بیوشیمیایی و عناصر ریزمغذی برگ و ریشه ذرت (Zea mays L)
محورهای موضوعی : تنش
سیده نسرین وقار موسوی
1
,
سارا سعادتمند
2
*
,
رشید جامعی
3
,
رضا درویش زاده
4
1 - دانشکده علوم و فناوریهای همگرا، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه زیست شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی ،تهران، ایران.
3 - گروه زیست شناسی، دانشگاه ارومیه، ارومیه، ایران
4 - گروه تولید و ژنتیک گیاهی دانشکده کشاورزی و منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران
کلید واژه: تنش محیطی, ذرت, فعالیت پاداکسندگی, فنل و فلاونوئید, کیتوزان,
چکیده مقاله :
نظر به این¬که عملکرد ذرت تحت تأثیر شوری کاهش می¬یابد، در تحقیق حاضر اثر این تنش بر روی رقم سینگل کراس 201 ذرت بررسی و نقش تعدیل¬کنندگی نانوذره کیتوزان ارزیابی شد. بدین منظور، بذور در گلدان¬هایی کشت شدند و در مرحله چهار برگی تیمارهای مختلف یعنی تنش شوری در سه سطح 0، 05/0 و 1/0 مولار و اسپری نانو ذره کیتوزان nm 50 با غلظت¬های 0، 05/0 و 1/0 گرم بر لیتر اعمال گردید. نتایج نشان داد که اثر ساده عوامل مورد مطالعه یعنی شوری، نانوذره و بافت گیاه بر میزان تمام صفات معنی¬دار بود. علاوه بر این، برهم¬کنش شوری × نانوذره × بافت برای اکثر صفات به شدت معنی¬دار شد. صفاتی مانند فنل، فلاونوئید، آنتوسیانین، جاروب¬کنندگی رادیکال DPPH و محتوای نیتروژن و روی در برگ ذرت بسیار بیشتر از ریشه آن بود. در اکثر صفات اختلاف آماری معنی¬داری بین تیمارهای مورد مطالعه در بافت ریشه مشاهده نشد، در حالی که در بافت برگ شاهد تفاوت معنی¬دار بین میانگین¬ها بودیم. میزان فنل و فلاونوئید، درصد جاروب¬کنندگی رادیکال¬های آزاد DPPH و آنتوسیانین برگ ذرت با افزایش غلظت محلول¬پاشی نانوذره کیتوزان و نیز سطح شوری به¬¬ترتیب افزایش و کاهش معنی¬داری داشتند. همچنین با تشدید تنش شوری به¬وضوح میزان آهن و روی در برگ ذرت کاهش یافت که استفاده از محلول¬پاشی نانوذره کیتوزان تا حد زیادی این روند را بهبود داد. با توجه به عملکرد مطلوب نانوذره کیتوزان و خطرات پایین زیستمحیطی آن توصیه می¬گردد در برنامه¬های کشت ذرت و مدیریت شوری در اراضی شور کشور از این نانوذره استفاده گردد.
Considering that the maize yield decreases under salinity, the effect of this stress on single cross 201 maize cultivar was investigated in the present study and the role of chitosan nanoparticles as a moderator was evaluated. For this purpose, the seeds were grown in pots, and at the four-leaf stage, different treatments were applied, i.e. salinity stress at three levels of 0, 0.05, and 0.1 M and 50 nm chitosan nanoparticle spray with concentrations of 0, 0.05, and 0.1 g/liter. The results showed that the simple effect of the studied factors, i.e. salinity, nanoparticles, and plant texture, was significant for all traits. In addition, the interaction of salinity × nanoparticle × texture was highly significant for most traits. Characteristics such as phenol, flavonoid, anthocyanin, DPPH radical scavenging, and nitrogen and zinc content were much higher in maize leaves than in their roots. In most traits, no statistically significant difference was observed between the studied treatments in the root, while in the leaf we saw a significant difference between the averages. The amount of phenol, flavonoid, DPPH radical scavenging, and anthocyanin in maize leaf increased and decreased with chitosan nanoparticle spraying and salinity, respectively. Also, with the increase of salinity, the amount of iron and zinc in maize leaves decreased and the application of chitosan nanoparticle solution improved this process to a great extent. Considering the optimal performance of chitosan nanoparticles and its low environmental risks, it is recommended to use this nanoparticle in maize cultivation and salinity management programs in the country's saline lands.
Al-Tawaha, A. R. M., & Al-Ghzawi, A. L. A. (2013). Effect of chitosan coating on seed germination and salt tolerance of lentil (Lens culinaris L.). Research on Crops, 14(2), 489-491.
Al-Tawaha, A. R., Turk, M. A., Al-Tawaha, A. R. M., Alu'Datt, M. H., Wedyan, M., Al-Ramamneh, E. A. D. M., & Hoang, A. T. (2018). Using chitosan to improve growth of maize cultivars under salinity conditions. Bulgarian Journal of Agricultural Science, 24(3): 437–442.
Arya, S. P., Mahajan, M., & Jain, P. (2000). Non-spectrophotometric methods for the determination of Vitamin C. Analytica Chimica Acta, 417(1): 1-14.
Arzhang, S., Darvishzadeh, R., Alipour, H., Maleki, H. H., & Dezhsetan, S. (2024). Genetic variability of maize (Zea mays) germplasm from Iran: genotyping with a maize 600K SNP array and genome-wide scanning for selection signatures. Crop and Pasture Science, 75(3).
Attaran Dowom, S., Karimian, Z., Mostafaei Dehnavi, M., & Samiei, L. (2022). Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biology, 22(1): 364.
Attia, M.S., Osman, M.S., Mohamed, A.S., Mahgoub, H.A., Garada, M.O., Abdelmouty, E.S., & Abdel Latef, A.A.H. (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10(2): 388.
Bandara, S., Du, H., Carson, L., Bradford, D., & Kommalapati, R. (2020). Agricultural and biomedical applications of chitosan-based nanomaterials. Nanomaterials, 10(10): 1903.
Behboudi, F., Tahmasebi Sarvestani, Z., Kassaee, M. Z., Modares Sanavi, S. A. M., Sorooshzadeh, A., & Ahmadi, S. B. (2018). Evaluation of chitosan nanoparticles effects on yield and yield components of barley (Hordeum vulgare L.) under late season drought stress. Journal of Water and Environmental Nanotechnology, 3(1), 22-39.
Behboudi, F., Tahmasebi Sarvestani, Z., Zaman Kassaee, M., Modares Sanavi1, S.A.M., & Sorooshzadeh, A. (2019a). The effect of foliar and soil application of chitosan nanoparticles on chlorophyll, photosynthesis, yield and yield components of wheat (Triticum aestivum L.) under drought stress after pollination. Plant Process and Function, 8(30): 271-285. [In Persian].
Behboudi, F., Tahmasebi-Sarvestani, Z., Kassaee, M. Z., Modarres-Sanavy, S. A. M., Sorooshzadeh, A., & Mokhtassi-Bidgoli, A. (2019b). Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. Journal of Plant Nutrition, 42(13): 1439-1451.
Bittelli, M., Flury, M., Campbell, G. S., & Nichols, E. J. (2001). Reduction of transpiration through foliar application of chitosan. Agricultural and Forest Meteorology, 107(3): 167-175.
Brand-Williams, W., Cuvelier, M.E., & Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30.
Chen, M., Yang, Z., Liu, J., Zhu, T., Wei, X., Fan, H., & Wang, B. (2018). Adaptation mechanism of salt excluders under saline conditions and its applications. International Journal of Molecular Sciences, 19(11): 3668.
Cho, M. H., No, H. K., & Prinyawiwatkul, W. (2008). Chitosan treatments affect growth and selected quality of sunflower sprouts. Journal of food science, 73(1), S70-S77.
ChunYan, L., GuoRui, M., & WenYing, H. (2003). Induction effect of chitosan on suppression of tomato early blight and its physiological mechanism. Journal of Zhejiang University (Agriculture and Life Sciences), 29: 280-286.
Dzung, N. A. (2007). Chitosan and their derivatives as prospective biosubstances for developing sustainable eco-agriculture. Advances in Chitin Science X, 453-459.
Guan, Y. J., Hu, J., Wang, X. J., & Shao, C. X. (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science B, 10: 427-433.
Hassan, F. A. S., Ali, E., Gaber, A., Fetouh, M. I., & Mazrou, R. (2021). Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry, 162: 291-300.
Hassanvand, A., Saadatmand, S., Lari Yazdi, H., & Iranbakhsh, A. (2023). Evaluation of photosynthetic pigments, fluorescence indexes, gas exchange, and some active flavonoid substances Pansy (Viola tricolor L.) under the effect of Bio-Silver Nanoparticles. Journal of Plant Environmental Physiology, 69(1): 80-98. [In Persian].
Hidangmayum, A., & Dwivedi, P. (2022). Chitosan based nanoformulation for sustainable agriculture with special reference to abiotic stress: a review. Journal of Polymers and the Environment, 30(4): 1264-1283.
Iftikhar, N., Perveen, S., Ali, B., Saleem, M. H., & Al-Sadoon, M. K. (2024). Physiological and Biochemical Responses of Maize (Zea mays L.) Cultivars Under Salinity Stress. Turkish Journal of Agriculture and Forestry, 48(3): 332-343.
Iqbal, S., Hussain, S., Qayyaum, M. A., Ashraf, M., & Saifullah, S. (2020). The response of maize physiology under salinity stress and its coping strategies. Plant Stress Physiology, 1-25.
Li, C., Du, H., Wang, L., Shu, Q., Zheng, Y., Xu, Y., Zhang, J., Zhang, J., Yang, R. & Ge, Y. (2009). Flavonoid composition and antioxidant activity of tree peony (Paeonia section Moutan) yellow flowers. Journal of Agricultural and Food Chemistry, 57(18): 8496-8503.
Ma, L., Li, Y., Yu, C., Wang, Y., Li, X., Li, N., Chen, Q., & Bu, N. (2012). Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma, 249: 393-399.
Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences, 17(7): 996.
Ministry of Jihad Agriculture. (2023). Agricultural statistics. Vol. 1: Crops. Statistics and information technology office, deputy of planning and economy. Ministry of Jihad Agriculture. [In Persian].
Oliveira, H. C., Gomes, B. C., Pelegrino, M. T., & Seabra, A. B. (2016). Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide, 61: 10-19.
Quitadamo, F., De Simone, V., Beleggia, R., & Trono, D. (2021). Chitosan-induced activation of the antioxidant defense system counteracts the adverse effects of salinity in durum wheat. Plants, 10(7): 1365.
Rahimian, M.H., & Gholami, H. (2022). An analysis of the salinity status of water resources in use in the agricultural sector. Journal of Water and Sustainable Development, 9(3): 107-116. [In Persian].
Razavizadeh, R., Adabavazeh, F., & Komatsu, S. (2020). Chitosan effects on the elevation of essential oils and antioxidant activity of Carum copticum L. seedlings and callus cultures under in vitro salt stress. Journal of Plant Biochemistry and Biotechnology, 29: 473-483.
Román-Doval, R., Torres-Arellanes, S. P., Tenorio-Barajas, A. Y., Gómez-Sánchez, A., & Valencia-Lazcano, A. A. (2023). Chitosan: Properties and its application in agriculture in context of molecular weight. Polymers, 15(13): 2867.
Sabagh, A. E., Çiğ, F., Seydoşoğlu, S., Battaglia, M. L., Javed, T., Iqbal, M. A., & Awad, M. (2021). Salinity stress in maize: Effects of stress and recent developments of tolerance for improvement. Cereal Grains, 1: 213.
Sen, S. K., Chouhan, D., Das, D., Ghosh, R., & Mandal, P. (2020). Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. International Journal of Biological Macromolecules, 145: 108-123.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3): 144-158.
Thambiliyagodage, C., Jayanetti, M., Mendis, A., Ekanayake, G., Liyanaarachchi, H., & Vigneswaran, S. (2023). Recent advances in chitosan-based applications—a review. Materials, 16(5): 2073.
Yousefi, K., Jamei, R., & Darvishzadeh, R. (2022). Study of some physiological and biochemical parameters of Okra plant (Abelmoschus esculentus L.) under salt stress in the presence of chitosan nanoparticles. Iranian Journal of Plant Biology, 14(1): 2322-2204. [In Persian].
Zayed, M. M., Elkafafi, S. H., Zedan, A. M., & Dawoud, S. F. (2017). Effect of nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production, 8(5), 577-585.
Zhang, G., Wang, Y., Wu, K., Zhang, Q., Feng, Y., Miao, Y., & Yan, Z. (2021). Exogenous application of chitosan alleviate salinity stress in lettuce (Lactuca sativa L.). Horticulturae, 7(10): 342.