Generic Zilpaterol Sources Affect Similarly the Meat Quality of Hairy Lambs When Compared with Patent Zilpaterol
Subject Areas : CamelO. Carrillo-Muro 1 , A. Rivera-Villegas 2 , B.I. Castro-Pérez 3 , J.D. Urías-Estrada 4 , C. Angulo-Montoya 5 , P. Hernández-Briano 6 , A. Plascencia 7 , A. Barreras 8 , A. Estrada-Angulo 9
1 - Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, Fresnillo 98500, Zacatecas, México
2 - Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán 80260, Sinaloa, México
3 - Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán 80260, Sinaloa, México
4 - Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán 80260, Sinaloa, México
5 - Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán 80260, Sinaloa, México
6 - Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, Fresnillo 98500, Zacatecas, México
7 - Departamento de Ciencias Naturales y Exactas, Universidad Autónoma de Occidente, Unidad Guasave, 81048, Sinaloa, México
8 - Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Mexicali, Baja California, México
9 - Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán 80260, Sinaloa, México
Keywords: meat quality, lambs, generic, zilpaterol,
Abstract :
Twenty-four Pelibuey × Katahdin (46.7±2.4 kg initial shrunk weight) crossbred intact male lambs were used in a 33-d growth-performance experiment order to compared two sources of generic zilpaterol vs. patent zilpaterol on five variables of meat quality (water holding capacity, color, purge loss, cook loss, and shear force) shear force) of lambs finished with a high-energy diet. Dietary treatments consisted of a corn-based finishing diet (13.3% crude protein and 2.11 Mcal of net energy for maintenance/kg dry matter) supplemented with no zilpaterol (control) or supplemented with the label dosage (125 mg of product/kg diet, as-fed basis) with patent brand zilpaterol [Zilmax® (ZIL)] or with two generic ZH sources [Grofactor® (GRO) or Zipamix® (ZIPA)]. Weight at slaughter was 50.93, 54.55, 54.20, and 54.50 kg for control, ZIL, GRO, and ZIPA, respectively. The average intake of zilpaterol was 0.16 mg ZH/kg live weight. There were no differences between zilpaterol sources on meat quality variables evaluated. Compared to controls, zilpaterol supplementation did not appreciably affect color, water-holding capacity, and drip loss. However, supplemental zilpaterol averaged an increased 36% shear force (4.11 vs. 2.63). It is concluded that the generic zilpaterol sources tested in the present experiment affect similarly the meat quality of hairy lambs fed a high-energy diet than patent brand zilpaterol. Zilpaterol affected mainly the tenderness of the meat.
Avendaño-Reyes L., Meraz-Murillo F.J., Pérez-Linares C., Figueroa-Saavedra F., Correa A., Alvarez-Valenzuela F.D., Guerra-Liera J.E., López-Rincón G. and Macías-Cruz U. (2016). Evaluation of efficacy of Grofactor, a beta-adrenergic agonist base don zilpaterol hydrochloride, using feedlot finishing bulls. J. Anim. Sci. 94, 2954-2961.
Avendaño-Reyes L., Torrentera N., Correa-Calderón A., López-Rincón G., Soto-Navarro S.A., Rojo-Rubio R., Guerra-Liera J.E. and Macías-Cruz U. (2018). Daily optimal level of a generic beta-agonist base don zilpaterol hydrochloride for feedlot hair lambs. Small Rumin. Res. 165, 48-53.
Carr S.N., Ivers D.J., Anderson D.B., Jones D.J., Mowrey D.H., England M.B., Killefer J., Rincker P.J. and McKeith F.K. (2005). The effects of ractopamine hydrochloride on lean carcass yields and pork quality characteristics. J. Anim. Sci. 83, 2886-2893.
Cayetano-De-Jesus J.A., Rojo-Rubio R., Grajales-Lagunes A., Avendaño-Reyes L., Macias-Cruz U., Gonzalez-del-Prado V., Olmedo-Juárez A., Chay-Canul A., Roque-Jiménez J.A. and Lee-Rangel H.A. (2020). Effect of zilpaterol hydrochloride on performance and meat quality in finishing lambs. Agriculture. 10, 241-252.
Daly C.C., Young O.A., Graafhuis A.E., Moorhead S.M. and Easton H.S. (1999). Some effects of diet on beef meat and fat attributes. New Zealand J. Agric. Res. 42, 278-287.
Dunne P.G., Monahan F.J., O’Mara F.P. and Moloney A.P. (2009). Colour of bovine subcutaneous adipose tissue: A review of contributory factors, associations with carcass and meat quality and its potential utility in authentication of dietary history. Meat Sci. 81, 28-45.
Dunne S., Shannon B., Dunn C. and Cullen W. (2013). A review of the differences and similarities between generic drugs and their originator counterparts, including economic benefits associated with usage of generic medicines, using Ireland as a case study. Pharmacol. Toxicol. 14, 1-10.
Elam N.A., Vasconcelos J.T., Hilton G., VanOverbeke D.L., Lawrence T.E., Montgomery T.H., Nichols W.T., Streeter M.N., Hutcheson J.P., Yates D.A. and Galyean M.L. (2009). Effect of zilpaterol hydrochloride duration of feeding on performance and carcass characteristics of feedlot cattle. J. Anim. Sci. 87, 2133-2141.
Estrada-Angulo A., Barreras-Serrano A., Contreras G., Obregón J.F., Robles-Estrada J.C., Plascencia A. and Zinn R.A. (2008). Influence of level of zilpaterol chlorhydrate supplementation on growth performance and carcass characteristics of feedlot lambs. Small Rumin. Res. 80, 107-110.
Geesink G.H. and Koohmaraie M. (1999). Postmortem proteolysis and calpain/calpastatin activity in callipyge and normal lamb bicep femoris during extended postmortmen storage. J. Anim. Sci. 77, 1490-1501.
Hilton G.G., Montgomery J.L., Krehbiel C.R., Yates D.A., Hutcheson J.P., Nichols W.T., Streeter M.N., Blanton J.R. Jr. and Miller M.F. (2009). Effects of feeding zilpaterol hydrochloride with and without monensin and tylosin on carcass cutability and meat palatability of beef steers. J. Anim. Sci. 87, 1394-1406.
López-Carlos M.A., Aguilera-Soto J.I., Ramírez R.G., Rodríguez H., Carrillo-Muro O. and Méndez-Llorente F. (2014). Effect of zilpaterol hydrochloride on growth performance and carcass characteristics of wether goats. Small Rumin. Res. 117, 142-150.
Montgomery J.L., Krehbiel C.R., Cranston J.J., Yates D.A., Hutcheson J.P., Nichols W.T., Streeter M.N., Bechtol D.T., Johnson E., TerHune T. and Montgomery T.H. (2009). Dietary zilpaterol hydrochloride. I. Feedlot performance and carcass traits of steers and heifers. J. Anim. Sci. 87, 1374-1383.
NRC. (2007). Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids. National Academy Press, Washington, D.C., USA.
Partida J.A., Casaya T.A., Rubio M.S. and Medina R.D. (2015). Effect of zilpaterol hydrochloride on the carcass characteristics of Katahdin Lamb terminal crosses. Vet. Mexico OA. 2, 346-357.
Rivera-Villegas A., Estrada-Angulo A., Castro-Pérez B.I., Urías-Estrada J.D., Ríos-Rincón F.G., Rodríguez-Cordero D., Barreras A., Plascencia A., González-Vizcarra V.M., Sosa-Gordillo J.F. and Zinn R.A. (2019). Comparative evaluation of supplemental zilpaterol hydrochloride sources on growth performance, dietary energetics and carcass characteristics of finishing lambs. Asian-Australasian J. Anim. Sci. 32, 209-216.
SAS Institute. (2007). SAS®/STAT Software, Release 9.3. SAS Institute, Inc., Cary, NC. USA.
Walter L.A.J., Schmitz A.N., Nichols W.T., Hutcheson J.P. and Lawrence T.E. (2018). Live growth performance, carcass grading characteristics, and harvest yields of beef steers supplemented zilpaterol hydrochloride and offered ad libitum or maintenance energy intake. J. Anim. Sci. 96, 1688-1703.