شخصی سازی محیط یادگیری الکترونیکی بر اساس خودکارآمدی دانشجویان
محورهای موضوعی :
1 - دکترای مدیریت آموزشی، مرکز نوآوری فناورییهای نوین آموزش پزشکی دانشگاه علوم پزشکی اران، تهران، ایران
2 - دانشجوی کارشناسی ارشد روانشناسی، واحد الکترونیکی دانشگاه آزاد اسلامی، تهران، ایران)
کلید واژه: شخصی سازی, محیط یادگیری, خودکارآمدی, دانشجویان,
چکیده مقاله :
هدف از پژوهش حاضر شخصی سازی محیط یادگیری الکترونیکی بر اساس خودکارآمدی دانشجویان کارشناسی ارشد در دانشگاه آزاد واحد الکترونیکی میباشد. روش پژوهش توصیفی-پیمایشی و جامعه آماری شامل دانشجویان دختر و پسر دورههای آموزشی واحد الکترونیکی دانشگاه آزاد اسلامی واحد الکترونیکی تهران در سال تحصیلی 1402-1403 میباشد، که تعداد 30 نفر به روش نمونه گیری هدفمند انتخاب و مورد مطالعه قرار گرفتند. برای سنجش عملکرد سامانه طراحی شده، عملکرد تحصیلی و میزان استفاده از سامانه در دو گروه شاهد و آزمون، پیش و پس از شخصی سازی مقایسه گردیده است. با توجه به اینکه روش اصلی سنجش خودکارآمدی، استفاده از پرسشنامه است لیکن در این پژوهش از روشی ضمنی برای شناسایی خود کارآمدی تحصیلی یادگیرنده استفاده شده است. اين تحقيق در قالب سيستم توصيه گر فازي در بطن سامانة آموزشيار هوشمند در يك نيمسال تحصيلي بر روي تعدادي از دانشجويان دورههای آموزش الكترونيكي در دو مرحله اجرا شد؛ بدين ترتيب كه در گام اول و بر روي نيمي از درس پارها از توصیههای مبتني بر سبك يادگيري و در گام بعد و بر روي نيمة دوم درس پارها، از هم افزايي توصیههای مبتني بر سبك يادگيري و سبك شناختي با هم استفاده شد. نمونه مورد بررسی شامل30 نفر با میانگین سنی56/23 سال بوده است. ارزیابی محیط شخصی شده نشان میدهد که درنظرگرفتن ویژگیهای کاربردی در مدل یادگیرنده و ارائۀ درس پا رها و توصیههای متناسب با این ویژگیها، به پیشرفت تحصيلي75% از یادگیرندگان منجر شده و رضایت تحصیلی آنان را به دنبال داشته است. در تمامي مراحل ارائه دروس، توانمندي يادگيرندگان بر اساس نظرية پرسش -پاسخ فازي پايش و ارزيابي گرديد. استفاده از اين روش سبب شخصیتر شدن توصیههای آموزشي و در نتيجه علاقه-مندي افراد به ادامة كار با سامانة پيشنهادي، كاهش ميزان ارجاع¬هاي غير ضروري و كاهش زمان يادگيري شده است.
The aim of the present study is to personalize the e-learning environment based on the self-efficacy of master's students at Azad University, Electronic Branch. The research method is descriptive-survey and the statistical population includes male and female students of the electronic branch of Islamic Azad University, Tehran Electronic Branch in the academic year 1402-1403, of which 30 people were selected and studied by purposive sampling. To measure the performance of the designed system, academic performance and the amount of use of the system in two control and experimental groups were compared before and after personalization. Considering that the main method of measuring self-efficacy is to use a questionnaire, in this study an implicit method was used to identify the learner's academic self-efficacy. This research was carried out in the form of a fuzzy recommender system within the Smart Education Assistant system in one academic semester on a number of students of e-learning courses in two stages; Thus, in the first step and on half of the lessons, recommendations based on learning style were used, and in the next step and on the second half of the lessons, recommendations based on learning style and cognitive style were used together. The sample studied consisted of 30 people with an average age of 23.56 years. The evaluation of the personalized environment shows that considering the practical features in the learner model and providing lessons and recommendations appropriate to these features led to the academic progress of 75% of the learners and resulted in their academic satisfaction. In all stages of the lessons, the learners' capabilities were monitored and evaluated based on the fuzzy question-answer theory. Using this method made the educational recommendations more personalized and, as a result, people were more interested in continuing to work with the proposed system, reduced the amount of unnecessary referrals, and reduced learning time.
Cheng, Z., Wang, H., Zhu, X., West, R., Zhang, Z & Xu, Q. (2023). Open badges support goal setting and self-efficacy but not self-regulation in a hybrid learning environment. Computers & Education, 197, May 2023, 104744.
Gheibi M, Arefi M, Danesh E. The Relationship between Learning Styles and Self-efficacy of Students in Academic Groups. Applied Psychology. 2012; 6(1): 53-69. Persian.
Ghorbani F, Montazer GHA. E-learners’ personality identifying using their network behaviors. Computers in Human Behavior. 2015; 51: 42-52.
Hermita M, Thamrin WP. Metacognition toward academic self-efficacy among Indonesian private university scholarship students. Procedia-Social and Behavioral Sciences. 2015; 171: 1075-1080.
Hodges CB. Self-efficacy in the context of online learning environments: A review of the literature and directions for research. Performance Improvement Quarterly. 2008; 20(3-4): 7-29.
Honicke T, Broadbent J. The influence of academic self-efficacy on academic performance: A systematic review. Educational Research Review. 2016; 17: 63-84.
Jiang, X., Zhang, H., ao Wang, T & Zhang, C. (2023). The association of self-control, self-efficacy, and demographic characteristics with home-based E-learning behavior in nursing and midwifery undergraduates: A cross-sectional study under the COVID-19 epidemic. Nurse Education Today, 120, 105628.
Kamkar, Peyman; Saadipour, Esmaeil; Moradi, Rahim and Velayati, Elahe. (2018). The role of thinking style functions and self-efficacy in the level of students' readiness to participate in e-learning courses. Quarterly Journal of Educational Psychology of Allameh Tabatabaei University, 13(47), 118-95.
Mohammadi Ahmadabadi, Naser; Khavarian, Saeedeh; Yazdanizadeh, Farzaneh (2014). The role of artificial intelligence in fostering children's creativity in improving learning. Quarterly Journal of Information and Communication Technology in Educational Sciences, 4(4), 153-167.
Müller NM, Seufer, T. Effects of self-regulation prompts in hypermedia learning on learning performance and selfefficacy.Learning and Instruction. 2018; 58: 1-11.
Panadero E, Jonsson A, Botella, J. Effects of self-assessment on self-regulated learning and self-efficacy: Four meta-analyses. Educational Research Review. 2017; 22: 74-98.
Stracke E. Language learning strategies of Indonesian primary school students: In relation to self-efficacy beliefs. System. 2016; 60: 1-10.
Tavakolizadeh, Javad, Tabari, Jamshid, Walkbari, Ali. (2016). Academic self-efficacy: The predictive role of attachment styles and metacognitive skills. Social and Behavioral Sciences, 171, 113-120.
Yilmaz R. Knowledge sharing behaviors in e-learning community: Exploring the role of academic self-efficacy and sense of community. Computers in Human Behavior. 2016; 63:373-382.
Yilmaz R. Knowledge sharing behaviors in e-learningcommunity: Exploring the role of academic self-efficacy andsense of community. Computers in Human Behavior. 2016; 63: 373-382.
Zad Asadi Maryam and Safarzadeh Sahar (2014). Designing an optimal virtual learning model based on academic self-efficacy and self-regulated learning strategies mediated by academic adaptation. Rooyesh Ravashshani, Vol. 12, No. 3, Serial No. 84, 2014.
Zarrin, Fatemeh and Montazer, Gholam Ali. (2019). Quarterly Journal of Educational Technology, Personalization of the Electronic Learning Environment Based on Learner Self-Efficacy, 13(4), 24-34.
Zonoubi R, Rasekh AE, Tavakoli M. EFL teacher self-efficacy development in professional learning communities. System. 2017; 66: 1-12.