شناسایی پهنههای مناسب انتخاب لندفیل با تأکید بر شهرستانهای ساحلی با استفاده از مدل AHP_Fuzzy (نمونه موردی شهرستان بندر ماهشهر)
محورهای موضوعی : پسماند
آروشا منظمی
1
*
,
فرهاد کاظمی اسفه
2
,
سید مسعود منوری
3
1 - دانش آموخته ارشد آلودگی محیط زیست، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. *(مسوول مکاتبات)
2 - دانش آموخته ارشد عمران، دانشکده فنی و مهندسی عمران، دانشگاه تبریز، تبریز، ایران.
3 - دانشیار گروه علوم محیط زیست و جنگل، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
کلید واژه: مکانیابی, AHP_Fuzzy, دفن پسماند, شهرستان بندر ماهشهر,
چکیده مقاله :
زمینه و هدف: عدم مدیریت پسماند جامد در اکثر شهرهای جهان یک مشکل جدی است که باعث افزایش تولید زباله جامد میشود. مدیریت پسماند جامد درشهرستان بندرماهشهر بسیار ضعیف بوده و یکی از مشکلات مزمن شهراست. بنابراین، این شهر به محل دفن زباله مناسب برای مدیریت صحیح پسماندهای جامد و کاهش اثرات آن بر سلامت عمومی و محیطزیست نیاز دارد. هدف ازاین مطالعه شناسایی مکانهای مناسب دفن زباله در شهرستان بندرماهشهر باسیستم اطلاعات جغرافیایی، تکنیکهای تجزیهوتحلیل و ارزیابی تصمیمگیری چند معیاره AHP است که ازنظر طبیعی و زیستمحیطی قابلقبول و ازنظر کالبدی هم کمترین اثرات را داشته باشد.
روش بررسی: دراین مطالعه معیارهایی مانند کاربری زمینهای کشاورزی، رودخانهها، خط ساحل، باتلاق و مردابها، نوع خاک، درصد شیب، شهرها، روستاها، راههای اصلی، راههای روستایی، راهآهن، فرودگاه، جاذبههای گردشگری، مراکز صنعتی و خطوط انتقال انرژی بر اساس مدل AHP استفاده گردید.
یافته ها: براساس مدلAHP، فاصله از شهرها با 276/0، فاصله از خط ساحل با 091/0 و فاصله از راههای اصلی با 09/0 دارای بیشترین وزن و میزان ضریب خطای مدل هم برابر 07/0 است. با استفاده از روش فازی محدودیتهای اعمالشده و متغیرها نیز رفع اختلاف مقیاس شدهاند ومعیارهای مثبت از طریق فازی خطی کاهشی و معیارها منفی با استفاده از فازی خطی افزایشی نرمالسازی شدهاند.
بحث و نتیجه گیری: درنهایت از توابع پنجگانه فازی (AND, OR, SUM, GAMA, PRODUCT) برای تعیین پهنههای مناسب استفاده شد و تابع Gama0.9 بهعنوان تابع نهایی انتخاب سایت برگزیده و چهار سایت نهایی برای پسماند انتخابشدهاند که سه سایت برای شهرهای بندرماهشهر و بندرامام خمینی قابلاستفاده هستند و یک سایت نیز برای شهرک شهیدچمران قابلاستفاده است.
Backing and Objective: Mismanagement in solid waste disposal is a critical problem increasing the rate of global solid waste production globally. The solid waste management in Bandar-e Mahshahr, Iran is so poor that caused public health and environmental problems requiring to be addressed. The purpose of this study is to use a geographic information system, analysis techniques, and multi-criteria AHP decision-making evaluation techniques in determining suitable locations for landfill sites in Bandar-e Mahshahr. The selected landfill location must satisfy environmental, engineering, and social criteria.
Material and Methodology: In this paper, geotechnical properties, land utilization type, the location of transportation facilities, natural phenomena, and lifelines, were used in the distance-weighted AHP model.
Finding: Based on AHP model, the weight of the distances from cities, the coastline, and railroads are 0.276, 0.091, and 0.090, respectively, which are the highest weights, with an error coefficient of 0.07. Implementing fuzzy method has resolved the scale difference in applied restrictions and the variables. The positive measures have been normalized through the decreasing linear fuzzy and the negative measures have been normalized using the incremental linear fuzzy.
Discussion and Conclusion: In the end, five fuzzy functions (GAMA, SUM, OR, AND, PRODUCT) were used to determine suitable areas and 0.9 GAMA function was selected as the final function for choosing the suitable site. Four sites were then chosen, three for Bandar-e Mahshahr, and one for the Shahid Chamran residence area.
References
1. Abedini, M., & Saraei, B. (2023). Evaluating the environmental effects of waste burial in Saravan forests using the ANP network analysis model and choosing the appropriate place for waste burial. Geography and Human Relationships, 5(4), 760-777.
2. Calla, S., Guinchard, C., Moine, A., Novello-Paglianti, N., Nuninger, L., & Ogorzelec-Guinchard, L. (2023). Confronting the Uncertainties Associated with Long-Time Scales: Analysis of the Modes of Preservation of Memory of Radioactive Waste Burial Sites. Worldwide Waste: Journal of Interdisciplinary Studies, 6(1), 1.
3. Christy, H. L., Paulus, J., Raranta, R., & Tamod, Z. E. (2023). Analysis of The Characteristics Waste Buried in Landfill of North Sulawesi Province. International Journal of Advanced Energy, Life Science and Environment Sustainability, 3(3).
4. Zhang, C., Hu, M., Di Maio, F., Sprecher, B., Yang, X., & Tukker, A. (2022). An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Science of the Total Environment, 803, 149892.
5. Nanda, S., & Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19, 1433-1456.
6. Godswill, A. C., Gospel, A. C., Otuosorochi, A. I., & Somtochukwu, I. V. (2023). Industrial and community waste management: global perspective. American Journal of Physical Sciences, 1(1), 1-16.
7. Bao, Z., & Lu, W. (2023). Applicability of the environmental Kuznets curve to construction waste management: A panel analysis of 27 European economies. Resources, Conservation and Recycling, 188, 106667.
8. Siddiqui, M.Z., Everett, J.W., &Vieux, B.E.;)1996) Landfill siting using geographic information systems: A demonstration, Journal of Environmental Engineering, 1996, 122(6):515–523.
9. Khan, S., Anjum, R., Raza, S. T., Bazai, N. A., & Ihtisham, M. (2022). Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere, 288, 132403.
10. Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285.
11. Bui, T. D., Tseng, J. W., Tseng, M. L., Wu, K. J., & Lim, M. K. (2023). Municipal solid waste management technological barriers: A hierarchical structure approach in Taiwan. Resources, Conservation and Recycling, 190, 106842.
12. Shah, S. A. R., Zhang, Q., Abbas, J., Tang, H., & Al-Sulaiti, K. I. (2023). Waste management, quality of life and natural resources utilization matter for renewable electricity generation: The main and moderate role of environmental policy. Utilities Policy, 82, 101584.
13. Satrabi, Fariba; Sheikhi, Hojjat. (1401). Locating the waste burial site of Ravansar city with fuzzy method in GIS environment, 8th annual international congress on civil engineering, architecture and urban development, Tehran. (In Persian)
14. Talebi, Mohammad Sadiq. (1402)., locating the landfill site of Shahr Ardakan using multi-criteria decision making modeling in GIS environment, https://civilica.com/doc/1676048. (In Persian)
15. Askari Jabarabadi, Maitham; Najar Khodabakhsh, Zahra; Malekpour, Fatima. (1401). Locating the sanitary waste burial site of Kashan city using weighting methods and geographic information system GIS, 8th international conference on knowledge and technology of agricultural sciences, natural resources and environment of Iran, Tehran, https://civilica.com/doc/ 1651856. (In Persian)
16. Chegni, but; Kayani Sadr, Maryam; Cheraghi, Mehrdad. (1400). Locating hazardous waste landfills using multi-criteria decision-making methods and GIS (case study: Lorestan province). (In Persian)
17. Yin, B., Guangquan, Z., Xue, W., Du, Y., & Fengmin, L. (2023). Investigation on nitrogen leaching control in the semi-arid area of Loess Plateau restrained by surface soil covering and massive burying of vegetable waste. Journal of Agriculture Resources and Environment, 40(2), 434.
18. Overcamp, T. J. (2019). Low-level radioactive waste disposal by shallow land burial. In Handbook of Environmental Radiation (pp. 207-267). CRC Press.
19. Rafey, A., & Siddiqui, F. Z. (2023). A review of plastic waste management in India–challenges and opportunities. International Journal of Environmental Analytical Chemistry, 103(16), 3971-3987.
20. Baralla, G., Pinna, A., Tonelli, R., & Marchesi, M. (2023). Waste management: A comprehensive state of the art about the rise of blockchain technology. Computers in Industry, 145, 103812.
21. Al-Obadi, M., Ayad, H., Pokharel, S., & Ayari, M. A. (2022). Perspectives on food waste management: Prevention and social innovations. Sustainable Production and Consumption, 31, 190-208.
22. Mohsin, M., Ali, S., Shamim, S. et al. (2022). A GIS-based novel approach for suitable sanitary landfill site selection using integrated fuzzy analytic hierarchy process and machine learning algorithms. Environ Sci Pollut Res 29, 31511–31540 https://doi.org/10.1007/s11356-021-17961-x
23. Manguri, S.B.H., Hamza, A.A. Sanitary Landfill Site Selection Using Spatial-AHP for Pshdar Area, Sulaymaniyah, Kurdistan Region/Iraq. Iran J Sci Technol Trans Civ Eng 46, 1345–1358 (2022). https://bbibliograficas.ucc.edu.co:2160/10.1007/s40996-021-00605-y
24. Ali, S.A., Parvin, F., Al-Ansari, N. et al .(2021). Sanitary landfill site selection by integrating AHP and FTOPSIS with GIS: a case study of Memari Municipality, India. Environ Sci Pollut Res 28,7528–7550. https://doi.org/10.1007/s11356-020-11004-7
25. Sk, M.M, Ali, SA., & Ahmad, A. (2020) Optimal Sanitary Landfill Site Selection for Solid Waste Disposal in Durgapur City Using Geographic Information System and Multi-criteria Evaluation Technique. Environ Sci Pollut Res 70, 163–180 https://link.springer.com/article/10.1007/s42489-020-00052-1#citeas
26. Cobos Mora, S. L., & Solano Peláez, J. L. (2020). Sanitary landfill site selection using multi-criteria decision analysis and analytical hierarchy process: A case study in Azuay province, Ecuador. Waste Management & Research, 0734242X2093221. doi:10.1177/0734242X20932213 (https://doi.org/10.1177/0734242X20932213)
27. Karakuş, C. B., Demiroğlu, D., Çoban, A., & Ulutaş, A. (2020). Evaluation of GIS-based multi-criteria decision-making methods for sanitary landfill site selection: the case of Sivas city, Turkey. Journal of Material Cycles and WasteManagement. doi:10.1007/s10163-019-00935-0 https://link.springer.com/article/10.1007/s10163-019-00935-0
28. Amani Lari, Sara; Mirjalili, Vali Elah. (1401). Geological origin of dust and soil in the villages west of Bandar Abbas, 41st National Conference of Earth Sciences, Tehran, https://civilica.com/doc/1665419. (In Persian)
29. Bagheri Badaghabadi, Mohsen; Tomanyan, Norayer. (2018). Examining the compatibility of the structure of the geosoil method with the soil classification system in soil-landscape models using conditional probabilities, https://civilica.com/doc/1663594. (In Persian)
30. Ali SA, Ahmad A (2020) Suitability analysis for municipal landfill site selection using fuzzy analytic hierarchy process and geospatial technique. Environ Earth Sci 79:1–27. https://bbibliograficas.ucc.edu.co:2160/10.1007/s12665-020-08970-z
31. Ebistu TA, Minale AS (2013) Solid waste dumping site suitability analysis using geographic information system (GIS) and remote sensing for Bahir Dar Town, North Western Ethiopia. Afr J Environ Sci Technol 7(11):976–989. https://bbibliograficas.ucc.edu.co:2160/10.5897/AJEST2013.1589
32. Ali, S. A., Parvin, F., Al-Ansari, N., Pham, Q. B., Ahmad, A., Raj, M. S., … Thai, V. N. (2020). Sanitary landfill site selection by integrating AHP and FTOPSIS with GIS: a case study of Memari Municipality, India. Environmental Science and Pollution Research. doi:10.1007/s11356-020-11004-7 (https://doi.org/10.1007/s11356-020-11004-7)
33. Dar, S. N., Wani, M. A., Shah, S. A., & Skinder, S. (2018). Identification of suitable landfill site based on GIS in Leh, Ladakh Region. GeoJournal, 84, 1499–1513. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10708-018-9933-9.
34. Hasan, M. R., Tetsuo, K., & Islam, S. A. (2009). Landfill demand and allocation for municipal solid waste disposal in Dhaka city—an assessment in a GIS environment. Civil Engineering Journal, 37(2), 133–149.
35. Safavian, S. T. S., Fataei, E., Ebadi, T., & Mohamadian, A. (2015). Site selection of sarein’s municipal solid waste landfill using the GIS technique and SAW method. International Journal of Environmental Science and Technology, 6(12).
36. Ouma, Y. O., Kipkorir, E. C., & Tateishi, R. (2011). MCDA-GIS integrated approach for optimized landfill site selection for growing urban regions: an application of neighborhood-proximity analysis. Annals of GIS, 17(1), 43–62. https://bbibliograficas.ucc.edu.co:2160/10.1080/19475683.2011.558021.
37. Elmira, S., Behzad, N., Mazlin, B. M., Ibrahim, K., Halima, T., & Saadiah, H. (2011). Urban solid waste management based on geo-informatics technology, University Putra Malaysia. Malaysian Journal of Public Health Medicine, 3(2), 54–60.
38. Al-Anbari, M. A., Al-Ansari, N., & Jasim, H. K. (2014). GIS and Multicriteria decision analysis for landfill site selection in Al-Hashimyah Qadaa. Natural Science, 6(5), 282–304. https://bbibliograficas.ucc.edu.co:2160/10.4236/ns.2014.65032.
39. Ajibade, O. F., Olajire, O. O., Ajibade, T. F., Nwogwu, N. A., Lasisi, K. H., Alo, A. B., et al. (2019). Combining multicriteria decision analysis with GIS for suitably siting landfills in a Nigerian state.Environmental and Sustainability Indicators. https://bbibliograficas.ucc.edu.co:2160/10.1016/j.indic.2019.100010.
40. Gorsevski PV, Donevska KR, Mitrovski CD, Frizado JP (2012) Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: a case study using ordered weighted average. Waste Manag 32(2):287–296. https://bbibliograficas.ucc.edu.co:2160/10.1016/j.wasman.2011.09.023
41. Kontos TD, Komilis DP, Halvadakis CP (2005) Siting MSW landfills with a spatial multiple criteria analysis methodology.Waste Manag 25(8):818–832.https://bbibliograficas.ucc.edu.co:2160/10.1016/j.wasman.2005.04.002
42. Babalola A, Busu I (2011) Selection of landfill sites for solid waste treatment in Damaturu town-using GIS techniques. J Environ Prot 2:1–10. https://bbibliograficas.ucc.edu.co:2160/10.4236/jep.2011.21001
43. Pasalari H, Farzadkia M, Gholami M, Emamjomeh MM (2019) Management of landfill leachate in Iran: valorization, characteristics, and environmental approaches. Environ Chem Lett 17:335–348. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10311-018-0804-x
44. Rafiee R, Khorasani N, Mahiny AS, Darvishsefat AA, Danekar A, Hasan SE (2011) Siting transfer stations for municipal solid waste using a spatial multi-criteria analysis. Environ Eng Geosci 17(2):143–154. https://bbibliograficas.ucc.edu.co:2160/10.2113/gseegeosci.17.2.143