استفاده از روش هیبرید انتخاب ویژگی و الگوریتم نزدیکترین همسایگی برای پیشبینی جهت حرکتی روزانه شاخص50 شرکت فعالتر بورس و اوراق بهادار تهران
محورهای موضوعی : مهندسی مالی
کلید واژه: الگوریتم ژنتیک, آنالیز اجزای اساسی, انتخاب ویژگی, پیشبینی روند, پوششدهنده, فیلترکننده, نزدیکترین همسایگی,
چکیده مقاله :
پیش بینی بازار سهام به علت پر سود بودن معاملات سهام همواره مورد توجه معامله گران و سرمایه گذاران می باشد. یک معامله موفق سهام در خرید و یا فروش در نزدیکی نقاطی که روند قیمت تغییر می یابد، اتفاق می افتد. بنابراین پیش بینی شاخص بازار سهام و تحلیل آن برای تشخیص اینکه آیا قیمت بسته شدن سهام در روز بعد افزایش خواهد یافت و یا کاهش، بسیار مهم است. در این پژوهش از روش طبقه بندی نزدیکترین همسایگی بر پایه روش ترکیبی انتخاب ویژگی برای پیش بینی جهت حرکتی شاخص 50 شرکت فعال تر بورس اوراق بهادار تهران استفاده شده است. این روش هیبرید انتخاب ویژگی، که ترکیبی از روش تجزیه و تحلیل اجزای اساسی و الگوریتم ژنتیک می باشد از مزایای هر دو نوع روش پوشش دهنده و فیلترکننده انتخاب ویژگی، برای انتخاب یک زیرمجموعه بهینه از بین فضای کل ویژگی ها برخوردار می باشد. عملکرد روش ترکیبی پیشنهادی با روش های متداول انتخاب ویژگی که عبارت است از: زنجیره اطلاعات، رلیف و روش آنالیز اجزای اساسی که جزو روش های فیلتر هستند و روش الگوریتم ژنتیک که از خانواده روش های پوشش دهنده می باشد، با استفاده از آزمون مقایسات زوجی مقایسه گردیده و نتایج حاصل نشان می دهد که روش ترکیبی ارائه شده از عملکرد بالاتری نسبت به دیگر روش های استفاده شده، در پیش بینی جهت حرکتی روزانه شاخص 50 شرکت فعال تر بورس اوراق بهادار تهران برخوردار می باشد.
* سینایی حسنعلی، مرتضویسعید الله، تیموری اصل یاسر. (1384)، پیشبینی شاخص بورس اوراق بهادار تهران با استفاده از شبکههای عصبی، بررسی های حسابداری و حسابرسی، سال دوازدهم، شماره41، صص 59-83.
* عبادی، ا. (1388). "پیشبینی قیمت شاخص کل سهام در بازار بورس تهران با استفاده از شبکههای عصبی مصنوعی. پایاننامه کارشناسی ارشد، دانشکده اقتصاد و علوم اجتماعی دانشگاه بوعلی سینا، همدان.
* عبده تبریزی، حسین. جوهری، هادی. (1375). بررسی کارامدی شاخص بورس اوراق بهادار تهران، تحقیقات مالی، 3 (2):47-61.
* فلاحپور سعید، گل ارضی غلامحسین، فتوره چیان ناصر. (1392). پیشبینی روند حرکتی قیمت سهام با استفاده از ماشین بردار پشتیبان بر پایه ژنتیک در بورس اوراق بهادار تهران، تحقیقات مالی، 15(2)، صص 269 -288.
* هاشمی احمد. (1389). تاثیر فاکتورهای رفتاری بر پیشبینی قیمت سهام با استفاده از مدل شبکههای عصبی رگرسیونی جلوسو، پایان نامه کارشناسی ارشد. دانشکده صنایع دانشگاه علم و فرهنگ، تهران.
* منجمی، سید امیر حسین، ابزری مهدی، رعیتی شوازی علیرضا.(1388). پیشبینی قیمت سهام در بازار بورس اوراق بهادار با استفاده از شبکه عصبی مصنوعی. فصلنامه اقتصاد مالی، 6 (3)،1-26.
* میرفیض فلاح شمس، دلنواز اصغری، بیتا. (1388)، پیشبینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه های عصبی، فراسوی مدیریت، سال سوم، شماره 9، صص، 191-212.
* Afolabi, M. O. Olude, O. (2007). "Predicting stock prices using a hybrid self organizing map (SOM)", In Proceedings of the 40th Hawaii international conference on system sciences (p.48).
* Altman, N. S. (1992). "An introduction to kernel and nearest-neighbor nonparametric regression",The American Statistician, 46 (3), PP. 175–185.
* Anna, B. (2007)."Should normal distribution be normal? The Student’s T alternative", ComputerInformation Systems and Industrial Management Applications, PP. 3–8.
* Atsalakis, G. S., Valavanis, K. P. (2009). "Surveying stock market forecasting techniques – Part II: Softcomputing methodsT",Expert Systems with Applications, 36(3), PP. 5932–5941.
* Bao, D. Yang, Z. (2008). "Intelligent stock trading system by turning point confirming and probabilistic reasoning",Expert Systems with Applications, 34, PP. 620–627.
* Bollerslev, T. (1986), "Generalized autoregressive conditional heteroscedasticity", Journal of Econometrics, 31, PP. 307–327.
* Box, G. Jenkins, G. (1976), "Time Series Analysis: Forecasting and Control, Holden-Day", San Francisco.
* Cao, L. J. Tay, F. E. H. (2003), "Support vector machine with adaptive parameters infinancial time series forecasting",IEEE Transactions on Neural Networks, 14(6), PP. 1506–1518.
* Dash, M. et al., (2002),"Feature selection for clustering – a filter solution", In Proceedings of the second international conference on data mining , PP. 115–122.
* Dy, J. G.Brodley, C. E. (2000),"Feature subset selection and order identification for unsupervised learning". In Proceedings of the 17th international conference on machine learning, PP. 247–254.
* Engle, R.F. (1982),"Autoregressive conditional heteroscedasticity with estimator of the variance of United Kingdom inflation", Econometrica, 50 (4), PP. 987–1008.
* Fama, E. F. (1970),"Efficient capital markets: A review of theory and empirical work,Proceedings of the Twenty-Eighth Annual Meeting of the American Finance Association",Journal of Finance, 25(2), PP. 383–417.
* GharehMohammadi, F. SanieeAbadeh, M. (2014)."Image steganalysis using a bee colony based feature selection algorithm". Engineering Applications of Artificial Intelligence, 31, PP. 35–43.
* Hall, M. A. (2000),"Correlation-based feature selection for discrete and numeric class machine learning",In Proceedings of the 17th international conference on machine learning, PP. 359–366.
* Huang, C. Yang, D. Chuang, Y. (2008)."Application of wrapper approach and composite classifier to the stock trend prediction", Expert System with Application, 34, PP. 2870–2878.
* Kim, K. Han, I. (2000), "Genetic algorithms approach to feature discretization in artificial neural networks for prediction of stock index", Expert System with Application, 19, PP. 125–132.
* Kim, H. Shin, K. (2007),"A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets",Applied Soft Computing, 7, 569–576.
* Kimoto, T. Asakawa, K. Yoda, M. Takeoka, M. (1990),"Stock market prediction system with modular neural network", in: Proceedings of the International Joint Conference on Neural Networks, San Diego, California, PP. 1–6.
* Kohavi, R. John, G. H. (1997),"Wrappers for feature subset selection. Artificial Intelligence", 97(1–2), PP. 273–324.
* Kwon, Y. Moon, B. (2007),"A hybrid neurogenetic approach for stock forecasting", IEEE Transactions on Neural Networks, 18(3), PP. 851–864.
* Lawrence, S. Giles, C. L. Tsoi, A. C. (1997),"Lessons in neural network training: Overfitting may be harder than expected",In Proceedings of the fourteenth national conference on artificial intelligence, AAAl-97, PP. 540–545.
* Los, C. A. (2000), "Nonparametric efficiency testing of Asian markets using weekly Data",Advances in Econometrics, 14, PP. 329–363.
* Min, J. H. Lee, Y.-C. (2005),"Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters",Expert Systems with Applications, 28(4), PP. 603–614.
* Nagarajan, V. Wu, Y. Liu, M., & Wang, Q. (2005),"Forecast studies for financial markets using technical analysis",In International Conference on Control and Automation (ICCA), PP. 259–264.
* Nair, B.B., Mohandas, V.P. & Sakthivel, N.R. (2010). "A Genetic Algorithm Optimized Decision Tree-SVM based Stock Market Trend Prediction System", (IJCSE) International Journal on Computer Science and Engineering, 2 (9): 2981-2988.
* Nanni, L. (2006),"Multi-resolution subspace for financial trading", Pattern Recognition Letters, 27, PP. 109–115.
* Nikolopoulos, C. Fellrath, P. (1994),"A hybrid expert system for investment advising", Expert Systemswith applications, 11 (4), PP. 245–250.
* Ni,L. g. Ni, Z. Gao, W. Y. (2011), "Stock trend prediction based on fractal feature selection and support vector machine", Expert Systems with Applications, 38, PP. 5569-5576.
* Oreski, S, Oreski, D.Oreski, G. (2012),"Hybrid system with genetic algorithm and artificial neural networks and its application to retail credit risk assessment", Expert systems with applications, 39(16), PP. 12605-12617
* Sai, Y. Yuan, Z. (2007),"Mining stock market tendency by RS-based support vector machines",IEEE International Conference on Granular Computing, 659–664.
* Shoaf, J. S. Foster, J. A. (1996),"A genetic algorithm solution to the efficient set problem: A technique for portfolio selection based on the Markowitz model", In Proceedings of the decision sciences institute annual meeting, Orlando, Florida, PP.571573.
* Tan, T. Z. Quek, C. See, Ng. G. (2007),"Biological brain-inspired genetic complementarylearning for stock market and bank failure prediction",Computational Intelligence, 23(2), PP. 236- 261.
* Teixeira, L.A. Oliveira.A .L. (2010), "A method for automatic stock trading combining technical analysis and nearest neighbor classification".Expert Systems with Applications, 37 (2010), PP. 6885–6890.
* Tsai, C. F. Hsiao, Y. C. (2010),"Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches", Decision Support Systems, 50, PP. 258-269.
* Vanstone, B. Tan, C. (2003),"A survey of the application of soft computing to investment and financial trading",In Proceedings of the Australian and New Zealand intelligent information systems conference, PP. 211–216.
* White, H. (1988),"Economic prediction using neural networks: A case of IBM daily stock returns". IEEE International Conference on Neural Networks, 2, PP. 451–458.
* Yu, L. Liu, H., (2003), "Feature selection for high-dimensional data: A fast correlation-based filter solution",In Proceedings of the 20th international conference on machine learning, PP. 856–863.