طراحی الگوریتم معاملاتی به منظور تسهیل دستیابی به یک سیستم سرمایه گذاری مناسب با بازدهی معقول ( مورد مطالعه: بورس اوراق بهادار تهران)
محورهای موضوعی : بورس اوراق بهادارحسن ترابی 1 * , مهدی برار نیا فیروزجایی 2
1 - گروه مهندسی صنایع، مجتمع دانشگاهی مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران
2 - فارغ¬التحصیل کارشناسی¬ارشد، مجتمع دانشگاهی مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران
کلید واژه: الگوریتم معاملاتی, نرخ بازده سرمایهگذاری, شاخص و پیشبینی بازار سهام, پرتفولیو,
چکیده مقاله :
یکی از مهمترین مسائل در بازارهای مالی مدرن یافتن راههای کارآمد برای تلخیص و مجسم کردن اطلاعات بازار بورس است. هدف این مقاله کشف روشی برای کاهش ریسک و افزایش بازده سرمایهگذاری است. با تحلیل حجم انبوه از دادههای بازار بورس تهران به عنوان مورد مطالعاتی، تحلیل روابط میان دادهها و کشف اطلاعات نهفته آنها که تأثیر فراوانی در تصمیمات سرمایهگذاران دارد؛ یک الگوریتم طراحی شد. همچنین از دادههای صنایع خودرو و فرآوردههای نفتی و شاخص صنایع مختلف طی سال 1398 تا 1401 استفاده شد و با کمک بیست شاخص تکنیکی، مدل سازی صورت پذیرفت. نتایج این پژوهش نشان داد که مدل مورد استفاده، در شناسایی و پیشبینی سیگنالهای فروش صادره در نقاط حداکثری دارای عملکرد قابل توجهی بوده و با دقت قابل قبولی، پیشبینی انجام میشود. شرکتهای سبد گردانی و تأمین سرمایه برای تصمیم گیری نسبت به فروش، خرید و یا نگهداری اوراق بهادار، میتوانند از این الگوریتم معاملاتی استفاده نمایند.
One of the most important issues in modern financial markets is finding efficient ways to summarize and visualize stock market information. The purpose of this paper is to discover a method to reduce risk and increase investment returns. By analyzing the mass volume of Tehran stock market data as a case study, and finding the relationships between the data and the discovery of their hidden information that has a significant impact on investors' decisions; an algorithm was designed. Moreover, the data from the automobile industry and oil products and the index of various industries were utilized from 2018 to 2022, and modeling was done by twenty technical indicators. The results of this research showed that mentioned model has a significant performance in identifying and predicting the sales signals issued at the maximum points and the prediction is done with acceptable accuracy. Portfolio management and capital supply companies can use this trading algorithm to make decisions regarding the sale, purchase or holding of securities.
_|1) اوون ودرال، جيمز (1395)، "فيزيک مالي"، حسين عبده تبريزی، تهران، نشر نی، (2013).
2) راعی, رضا و فلاحپور, سعید. (1390). طراحی مدلی برای مدیریت فعال پرتفوی با استفاده از VaR و الگوریتم ژنتیک. بررسیهای حسابداری و حسابرسی, 18(64), 19-34.
3) رستگار, محمد علی و صداقتیپور, امین. (1397). ارایه سیستم معاملات الگوریتمی برای قرارداد آتی سکه طلا مبتنی بر دادههای درون-روزی. دانش سرمایهگذاری, 7(28), 49-68.
4) سعیدی کوشا, مهدی و محبی, سعید. (1400). بهینهسازی پرتفوی سهام با استفاده از مقایسه الگوهای مختلف تکنیکال. مهندسی مالی و مدیریت اوراق بهادار, 12(49), 104-125.
5) شیبت الحمدی، سید احمد و اسفندیار، مهدی.(1393)، کاربرد الگوریتم ژنتیک چندهدفهNSGA II در انتخاب پرتفوی بهینه در بورس اوراق بهادار، نشریه: پژوهشگر (مدیریت) 11 (34) 21-34.
6) عالم تبريز، ، زندیه. (1387)، "الگوريتم های فرابتکاری در بهينه سازی تركيبي"، تهران، نشر صفار.
7) فلاح¬پور، سعید، گل ارضی، فتوره چیان. (1392)، پیش¬بینی روند حرکتی قیمت سهام با استفاده از ماشین بردار پشتیبان بر پایه الگوریتم ژنتیک در بورس اوراق بهادار تهران، مجله علمی تحقیقات مالی، 15(2)، 269-288.
8) كِنِدی، جفری (1398)" راهنمای بصری امواج اليوت"، مهدی ميرزايي، تهران، نشر آراد، (2013).
9) كيوانپور, محمدرضا، حسن زاده، مرادی. (1393) "مباحث پيشرفته در دادهکاوی"، تهران، نشر دانشگاهی کیان.
10) مشاری, محمد, دیده خانی, حسین. (1399). بررسی قابلیت پیشبینی پذیری نقاط شروع و پایان روند کوتاه مدت قیمت سهام با استفاده از شبکه احتمالات بیزین. راهبرد مدیریت مالی, 8(1), 39-64.
11) مورفی، جان (1400)، "تحليل فنی در بازار سرمايه"، کامیار فراهاني فر، قاسمیان لنگرودی، تهران، انتشارات چالش، (1999).
12) Alkhatib, Khalid (2022). A New Stock Price Forecasting Method Using Active Deep Learning Approach. Journal of Open Innovation Technology. 8(2), 96.
13) Bollerslev, T. (2014). Stock return predictability: statistical inference and international evidence. Journal of Quantitative Analysis, 49(3), 633-661.
14) Chang, P. C. (2012). A novel model by evolving connected neural network for stock price trend forecasting. Expert Systems with Applications, 39(1), 611-620.
15) Chen, Y. S. Cheng, C. (2016). A study of ANFIS-based multi- factor time series models for forecasting stock index. Applied Intelligence, 45(2), 277-292
16) Choudhry, R. (2008). A hybrid machine learning system for stock market forecasting. World Academy of Science, and Technology, 39(3), 315-318.
17) Cohen, G. (2022). Algorithmic Trading and Financial Forecasting Using Advanced Artificial Intelligence Methodologies. Mathematics, 10(18), 3302.
18) Fenghua, W. E. N. (2014). Stock price prediction based on SSA and SVM. Procedia Computer Science, 31, 625-631.
19) Ghosh, I., & Jana, R. K. (2023). A granular machine learning framework for forecasting high-frequency financial market variables during the recent black swan event. Technological Forecasting and Social Change, 194, 122719.
20) Hadavandi, E., (2010). Integration of genetic systems and artificial neural networks for stock price forecasting. Knowledge-Based Systems, 23(8), 808-800.
21) Hafezi, R. (2015). A bat-neural network multi-agent system for stock price prediction: a Case study of DAX stock price. Applied Soft Computing, 29, 196- 210.
22) Hajimiri, H. (2022). Use of Genetic Algorithm to Optimize Technical Analysis in International Stock Market. Journal of Cyberspace Studies, 6(1), 21-29.
23) Hamzaçebi, C. (2009). Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Systems with Applications, 36(2), 3839-3844.
24) Jog, V. (2003). Voluntary disclosure of management earnings forecasts in IPO prospectuses. Journal of Business Finance & Accounting, 30(1‐2), 125-168.
25) Kabbani, T., & Duman, E. (2022). Deep reinforcement learning approach for trading automation in the stock market. IEEE Access, 10, 93564-93574.
26) Kumbhare, P. (2023). Algorithmic Trading Strategy Using Technical Indicators. 11th International Conference on Emerging Trends in Engineering & Technology-Signal (ICETET-SIP) (pp. 1-6). IEEE.
27) Lahmiri, S. (2016). Intraday stock price forecasting based on variational mode decomposition. Journal of Computational Science, 12, 23-27.
28) Lauguico, Sandy (2019). A Fuzzy Logic-Based Stock Market Trading Algorithm Using Bollinger Bands. 1-6. 10.1109/HNICEM48295.2019.9072734.
29) Padovani, Matheus (2021). A stock trading algorithm based on trend forecasting and time series. ENIAC. 422-433. 10.5753/eniac.2021.18272.
30) Tan, L. (2017). A new adaptive network-based fuzzy inference system with adaptive adjustment rules for stock market volatility forecasting. Information Processing Letters, 127, 32-36.
31) Wang, Y. F. (2003). Mining stock price using fuzzy rough set system. Expert Systems with Applications, 24(1), 13-23.
|_