تاثیر یک دوره تمرین ترکیبی بر شاخصهای CK-MB و تروپونین I در بیماران قلبی عروقی
محورهای موضوعی : فیزیولوژی ورزش و علم تمرین
سیدمازیار سیدعلیخانی
1
,
عبدالعلی بنائی فر
2
*
,
شهرام سهیلی
3
,
سجاد ارشدی
4
,
وحید ایمانی پور
5
1 - گروه فیزیولوژی ورزش، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران.
2 - گروه فیزیولوژی ورزش، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران.
3 - عضو هئیت علمی واحد شهر قدس
4 - گروه فیزیولوژی ورزش، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
5 - عضو هئیت علمی دانشگاه آزاد اسلامی واحد پرند
کلید واژه: تمرین ترکیبی, تروپونین I , CK-MB, بیماری قلبی عروقی,
چکیده مقاله :
بیماریهای قلبی عروقی شایعترین علت مرگ و میر افراد در اغلب کشورهای جهان است. از سطوح بالای سرمی بیومارکرهای قلبی از جملهCK-MB و تروپونینI در تشخیص آسیب بافت قلب استفاده میشود. از مهمترین عوامل موثر در کاهش این بیماریها، ورزش و فعالیت جسمانی است. بر این اساس، هدف از مطالعه حاضر، بررسی اثر هشت هفته تمرین ترکیبی بر سطوحCK-MB و تروپونین I در بیماران قلبی عروقی است.
در این کارآزمایی بالینی با طراحی تصادفی، ۲۴ بیمار مبتلا به بیماریهای قلبی عروقی با میانگین سنی 8±59 سال و میانگین شاخص توده بدنی42/0±76/27 به صورت تصادفی به دو گروه تمرین ترکیبی و کنترل تقسيم شدند. گروه تمرینی به مدت هشت هفته و هر هفته سه جلسه طبق پروتکل مورد نظر، تمرینات هوازی و مقاومتی را انجام دادند. نمونهگیری خون بهصورت وریدی در دو مرحله پیش و پس از مداخله انجام شد. توزیع نرمال دادهها با استفاده از آزمون شاپیرو-ویلک ارزیابی گردید. جهت مقایسه تغییرات بینگروهی، از آزمون تحلیل کوواریانس همراه با آزمون تعقیبی بونفرونی استفاده شد.
نتایج نشان داد که تمرین ترکیبی سبب تغییرات معناداری در شاخص(p=0.03) CK-MB نسبت به گروه کنترل گردید؛ هر چند که تغییرات معناداری در شاخص تروپونین I مشاهده نشد(p=0.3) . افزایش شاخص CK-MB و عدم تغییر معنیدار در شاخص تروپونین I در بیماران، میتواند ناشی از فشار تمرین ترکیبی، ایجاد استرس متابولیک و بهبود ظرفیت عملکردی قلب و عروق باشد.
Cardiovascular diseases are the most common cause of death in the world. High serum levels of cardiac biomarkers, including CK-MB and troponin I, are used to diagnose heart tissue damage. Exercise and physical activity are the most important factors in reducing this disease. Accordingly, the aim of the present study was to investigate the effect of eight weeks of combined exercise on CK-MB and troponin I levels in cardiovascular patients.
In this clinical trial study, 24 patients with cardiovascular disease with age of 59±8 years and mean BMI (27.76±0.42) were randomly divided in two combined exercise and control groups. The exercise group performed aerobic and resistance exercises for eight weeks and three sessions per week according to the desired protocol. Blood sampling was performed intravenously in two stages before and after the intervention. Normal distribution was calculated using Shapiro-Wilk test and to compare between-group changes, analysis of covariance test with Bonferroni post hoc test was used.
The results showed that combined exercise caused a significant change in the CK-MB index (p=0.03) compared to the control group, although no significant change was observed in the troponin I index (p=0.3).
The increase in the CK-MB index and the lack of significant change in the troponin I index in patients can be attributed to combined exercise and the creation of metabolic stress and improvement of the functional performance of the heart.
[1] Aengevaeren, V.L., Baggish, A.L., Chung, E.H., George, K., Kleiven, Ø., Mingels, A.M., et al. (2021). Exercise-induced cardiac troponin elevations: from underlying mechanisms to clinical relevance. Circulation, 144(24):955-972.
[2] Aengevaeren, V.L., Hopman, M.T., Thompson, P.D., Bakker, E.A., George, K.P., Thijssen, D.H. (2019). Exercise-induced cardiac troponin I increase and incident mortality and cardiovascular events. Circulation, 140(10):804-14.
[3] Al-Joubouri, Z.T., Shamran, S.G., Jabbar, R.M., Ajeena, E.G. (2024). Assessment of Troponin Levels as a Biomarker of Myocardial Injury in Patients with Fatal Covid-19 for the Period 2020 to 2022: A Literature Review. Kufa Journal for Nursing Sciences, 14(2): 41-53.
[4] Amini-Najafabadi, B., Keshavarz, S., Asgary, S., Azarbarzin, M. (2021). The effect of 8 week of aerobic exercise on heart cells specific biochemical indicators in women with type 2 diabetes mellitus: A randomized clinical trial. Journal of Isfahan Medical School, 38(598):824-830.
[5] Anderson, L., Thompson, D.R., Oldridge, N., Zwisler, A.D., Rees, K., Martin, N., Taylor, R.S. (2016). Exercise‐based cardiac rehabilitation for coronary heart disease. Cochrane Database of Systematic Reviews, 2016(1).
[6] Aujla, R., Zubair, M., Patel, R. (2024). Creatine phosphokinase. StatPearls.
[7] Baird, M.F., Graham, S.M., Baker, J.S., Bickerstaff, G.F. (2012). Creatine‐kinase‐and exercise‐related muscle damage implications for muscle performance and recovery. Journal of nutrition and metabolism, 2012(1):960363.
[8] Bowman, J.D., Lindert, S. (2019). Computational studies of cardiac and skeletal troponin. Frontiers in molecular biosciences, 6:68.
[9] D’Alleva, M., Sanz, J., Giovanelli, N., Graniero, F., Mari, L., Spaggiari, R., et al. (2025). The influence of prolonged aerobic exercise on cardiac, muscular, and renal biomarkers in trained individuals with obesity. European Journal of Applied Physiology,2025:1-6.
[10] Delfani, Z., Shahidi, F., Kashef, M., Namdari, M. (2022). Effect of Different Volumes of High-intensity Interval Trainingon Serum Troponin I and Creatine KinaseMB Levels in Patients After Myocardial Infarction. Iranian Journal of Endocrinology and Metabolism,24(1):24-33.
[11] Falahati, A., Arazi, H. (2024). Cardiac biomarker responses following high-intensity interval and continuous exercise: the influence of ACE-I/D gene polymorphism and training status in men. Physiological Genomics, 56(6): 436-444.
[12] Hamedchaman, N., Riahy, S. (2019). The effect of 8 weeks of combined, interval aerobic and continuous aerobic training on lipid profile, function and some cardiovascular inflammatory markers in 30-45 year-olds' militaries in cold and mountainous climates. Journal of Military Medicine, 21(6):606-617.
[13] Harrison, N., Favot, M., Levy, P. (2019). The role of troponin for acute heart failure. Current Heart Failure Reports, 16:21-31.
[14] Januzzi, J.R., Suchindran, S., Coles, A., Ferencik, M., Patel, M.R., Hoffmann, U., et al. (2019). High-sensitivity troponin I and coronary computed tomography in symptomatic outpatients with suspected CAD: insights from the PROMISE trial. Cardiovascular Imaging, 12(6):1047-1055.
[15] Kastner, T., Frohberg, F., Hesse, J., Wolfarth, B., Wuestenfeld, J.C. (2024). Exercise-induced troponin elevation in high-performance cross-country skiers. Journal of Clinical Medicine, 13(8):2335.
[16] Kunutsor, S.K., Laukkanen, J.A. (2024). Physical activity, exercise and adverse cardiovascular outcomes in individuals with pre-existing cardiovascular disease: a narrative review. Expert review of cardiovascular therapy, 2024 Mar 3;22(1-3):91-101.
[17] Lavie, C.J., Arena, R., Swift, D.L., Johannsen, N.M., Sui, X., Lee, D, et al. (2015). Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circulation research,117(2):207-219.
[18] Li, G., Lu, T., Shan, N. (2024). A Case of Pseudo-Elevation of CK-MB without Myocardial Infarction. Clinical Laboratory, 70(11).
[19] Mair, J., Lindahl, B., Hammarsten, O., Müller, C., Giannitsis, E., Huber, K. et al. (2018). How is cardiac troponin released from injured myocardium? European heart journal: acute cardiovascular care,7(6):553-560.
[20] Mohammadkhani, R., Ranjbar, K., Salehi, I., Komaki, A., Zarrinkalam, E., Amiri, P. (2023). Comparison of the preconditioning effect of different exercise training modalities on myocardial ischemia-reperfusion injury. PLoS One, 18(12): e295169.
[21] Nystoriak, M.A., Bhatnagar, A. (2018). Cardiovascular effects and benefits of exercise. Frontiers in cardiovascular medicine,5:408204.
[22] Oluboyo, A.O., Omon, E.A., Oluboyo, B.O. (2024). Evaluation of Cardiac, Liver and Renal Indices During a Short Term Exercise Among Young Male Adults in Ado-Ekiti, Nigeria. 2024.
[23] Pakdaman, M., Gravandi, S., Askari, R., Shafii, M., Khaleghi Muri, M., Bahariniya, S. (2020). Estimation of the economic burden of cardiovascular diseases in selected hospitals of Yazd in 2018. Qom University of Medical Sciences Journal, 14(7):58-68.
[24] Rahendza, F., Nursyahbani, R., Simanjuntak, J.P., Sakdiah, S., [editors]. Relationship of CK-MB Levels with Troponin T in Patient with Coronary Heart Disease at Siloam Hospital Jambi. Proceeding International Conference Health Polytechnic of Jambi;2023.
[25] Rangraz, E., Mirzaei, B., Nia, F.R. (2019). The effect of resistance training on serum levels of NT-proBNP, GDF-15, and markers of cardiac damage in the elderly males. International Journal of Applied Exercise Physiology,8(1):138-148.
[26] Riveland, E., Valborgland, T., Ushakova, A., Skadberg, Ø., Karlsen, T., Hole, T., et al. (2024). Exercise training and high‐sensitivity cardiac Troponin‐I in patients with heart failure with reduced ejection fraction. ESC Heart Failure,11(2):1121-1132.
[27] Riveland, E., Valborgland, T., Ushakova, A.I., Skadberg, Ø., Karlsen, T., Linke, A., et al. (2020). Plasma levels of troponin I is reduced after 12-week exercise training program in patients with uncomplicated heart failure. A substudy of the SMARTEX-HF study. European Heart Journal, 2020;41.
[28] Salmani Pour, M., Mehrabani, J., Mogharnasi, M., Hoseini, R., Damirchi, A. (2016). Effect of maximal aerobic exercise on changes of contractile biomarkers of myocardial (CK-MB and cTn-I) in the middle-aged men with metabolic syndrome. Tabari Biomedical Student Research Journal, 2(3):23-32.
[29] Schroeder, E.C., Franke, W.D., Sharp, R.L., Lee, D. (2019). Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PloS one,14(1): e0210292.
[30] Sharifzadeh, H., Monazami, A.A., Azizi, M. (2019). Effects of Acute Resistance Training on Biochemical Markers of Myocardial Injury (cTnT, cTnI, CK-MB) in Non-Athlete Women. Journal of Kermanshah University of Medical Sciences, 23(2).
[31] Shave, R., Baggish, A., George, K., Wood, M., Scharhag, J., Whyte, G., et al. (2010). Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. Journal of the American College of Cardiology, 56(3):169-176.
[32] Statistics NCfH. Multiple Cause of Death 2018-2022 on CDC WONDER Database. National Center for Health Statistics: Hyattsville, MD, USA. 2023.
[33] Tesema, G., George, M. (2021). Associations between cardiac troponin I and cardiovascular parameters after 12-week endurance training in young moderately trained amateur athletes. BMJ Open Sport & Exercise Medicine, 7(1): e001065.
[34] Tranchita, E., Murri, A., Grazioli, E., Cerulli, C., Emerenziani, G.P., Ceci, R., et al. (2022). The beneficial role of physical exercise on anthracyclines induced cardiotoxicity in breast cancer patients. Cancers, 14(9): 2288.
[35] van der Linden, N., Klinkenberg, L.J., Leenders, M., Tieland, M., Verdijk, L.B., Niens, M., et al. (2015). The effect of exercise training on the course of cardiac troponin T and I levels: three independent training studies. Scientific reports, 5(1):18320.
[36] Wang, X., Li, S., Xia, C., Meng, X., Li, Y., Weng, S., et al. (2024). Exercise-induced cardiac troponin elevations and cardiac ventricular dysfunction assessed by tissue Doppler echocardiography and speckle tracking among non-elite runners in Beijing marathon. Journal of Science and Medicine in Sport, 27(8): 508-514.
[37] World Health Organization. Cardiovascular diseases (CVDs). Retrieved April 30, 2025, from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
[38] Zhang, Y., Liu, M., Zhang, C., Zou, Y., Kang, L., Song, L. (2024). Role of biomarkers of myocardial injury to predict adverse outcomes in hypertrophic cardiomyopathy. Circulation: Cardiovascular Quality and Outcomes, 17(2): e010243.