اثربخشی باکتری Micrococcus luteus بر روی برخی شاخصهای خونی و ایمنی بچهماهی کپور معمولی
محورهای موضوعی : فصلنامه زیست شناسی جانوری
مهران آوخ کیسمی
1
*
,
علیرضا اکبری
2
,
حمید عبدالله پور بی ریا
3
,
مریم آوخ کیسمی
4
1 - بخش تحقیقات شیلات و آبزیان، مرکز تحقیقات و آموزش کشاورزي و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزي، رشت، ایران
2 - بخش تحقیقات شیلات و آبزیان، مرکز تحقیقات و آموزش کشاورزي و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزي، رشت، ایران
3 - عضو هیات علمی دانشگاه آزاد واحد تالش
4 - بخش تحقیقات گروه آموزشی علوم تجربی، اداره کل آموزشوپرورش استان گیلان ، پردیس آموزشی بنتالهدی صدر، رشت، ایران
کلید واژه: کپور معمولی, Micrococcus luteus, شاخصهای خونی, شاخصهای ایمنی,
چکیده مقاله :
این تحقیق بهمنظور بررسی تأثیر باکتری Micrococcus luteus بر شاخصهای خونی، ایمنی بچه ماهی کپور معمولی (Cyprinus carpio) در مرکز آموزش علوم و صنایع شیلاتی میرزا کوچک خان و مرکز تکثیر و بازسازی ذخایر ماهیان استخوانی شهید انصاری گیلان در خلال ماههای اردیبهشت تا مرداد 1402 انجام شد. در اين آزمايش M. luteus جداشده از دستگاه گوارش ماهی کپور معمولی به غذاي تجاري پلت 300 قطعه بچه ماهی کپور معمولی (2.87±28.018) به مدت 8 هفته بهصورت یک طرح کاملا تصادفی در 3 تیمار و 3 تکرار (20 قطعه ماهی در هر تانک) استفاده شد. با مخلوط کردن غذاي ماهی در سوسپانسیون M. luteus ،3 نوع جيره با غلظتهای مختلف M. luteus در پلت شامل: 106، 107سلول در گرم بهعنوان تیمارهای 1، 2و شاهد بدون باكتري تهيه شد. بعد از 56 روز غذادهی با سطوح مختلف باکتری M. luteus در جیره بچه ماهیان کپور معمولی مقادیر هماتوکریت، گلبول قرمز خون و هموگلوبین، مقادیر MCV و MCH MCHC، نوتروفیل و مونوسیت، سدیم، لیزوزیم و C3 در تیمار 1 و 2 به شکل معنیداری بیشتر از تیمار شاهد بود. در این رابطه تیمار 1 بیشترین مقادیر را دارا بود. اما مقادیر کلسیم، فسفر، IGM و C4 در تیمار شاهد، تیمار 2 تفاوت معنیدار آماری نداشت. بین تعداد باکتریهای گرم مثبت و باکتریهای گرم منفی موجود در دستگاه گوارش و آب تانکهای پرورش نسبت به تیمار شاهد اختلاف معنیدار بود. تجزیهوتحلیل نتایج حاصل، فواید استفاده از پروبیوتیک M. luteus در جیره غذایی بچه ماهیان کپور معمولی را در برخی موارد نشان داد. M. luteus معمولاً برای ماهی بیماری زا نیست. ازاینرو استفاده از این پروبیوتیک در پرورش ماهی کپور معمولی جهت افزایش توان مقابله با بیماریها قابل پیشنهاد است.
This research was conducted to investigate the effect of Micrococcus luteus bacteria on the blood indices, and immunology of common carp fry (Cyprinus carpio) in Mirzakochek Khan Training Center and Shahid Ansari Bony Fish Center in Gilan was carried out in 2023. Micrococcus luteus isolated from the digestive tract of common carp was fed to commercial pellet feed of 300 pieces of common carp juveniles (28.018 ± 2.87) for 8 weeks with 5 treatments and 3 replications (20 pieces of fish in each tank) used. Mixing fish feed in the suspension of Micrococcus luteus, 5 types of diets with different concentrations of Micrococcus in the pellet including 106, 107 cells/g were prepared as treatments 1, 2 and control without bacteria. After 56 days of feeding with these treatments, different levels of Micrococcus luteus bacteria in the diet of common carp fry increase the amount of The values of hematocrit, red blood cells, and hemoglobin, values of MCV and MCH MCHC, neutrophil and monocyte, sodium, lysozyme, and C3 in treatments 1 and 2 were significantly higher than the control treatment. In this regard, treatment 3 had the highest values, but the amounts of calcium, phosphorus, IGM, and C4 in the control treatments, treatments 1 and 2 did not have a statistically significant difference. There was a significant difference between the number of gram-positive and gram-negative bacteria in the digestive tract and water of the rearing tanks compared to the control treatment (P<0.05). Analysis of the results showed the benefits of using M. luteus probiotic in the diet of common carp fry in some cases. M. luteus is usually not pathogenic for fish. Therefore, the use of this probiotic in common carp farming to increase the ability deal with diseases is recommended.
1. Aattouri, N., Bouras, M., Tome, D., Marcos, A., Lemonnier, D. 2002. Oral ingestion of lactic-acid bacteria by rats increases lymphocyte proliferation and interferon-γ production. British Journal of Nutrition, 87(4): 367-373.
2. Abd El-Rhman, A. M., Khattab, Y. A., Shalaby, A. M. 2009. Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 27(2): 175-180.
3. Al‐Dohail, M. A., Hashim, R., Aliyu‐Paiko, M. 2009. Effects of the probiotic, Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African Catfish (Clarias gariepinus, Burchell 1822) fingerling. Aquaculture Research, 40(14): 1642-1652.
4. Ali, A. 2000. Probiotics in fish farming. Evaluation of a bacterial mixture. Rapport-Sveriges Lantbruksuniversitet, Vattenbruksinstitutionen (Sweden), (19).
5. Ali، F. H. M. 2010. Probiotics feed supplement" to improve quality of broiler chicken carcasses. World Journal of Dairy and Food Sciences, 5: 93-99.
6. Aly, S. M., Ahmed, Y. A. G., Ghareeb, A. A. A., Mohamed, M. F. 2008. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish & shellfish immunology, 25(1-2): 128-136.
7. Anderson, D. P., Roberson, B. S., Dixon, O. W. 1979. Plaque-forming cells and humoral antibody in rainbow trout (Salmo gairdneri) induced by immersion in a Yersinia ruckeri O-antigen preparation. Journal of the Fisheries Board of Canada, 36(6): 636-639.
8. Aubin، J. Gatesoupe، F. J. Labbé، L., Lebrun، L. 2005. Trial of probiotics to prevent the vertebral column compression syndrome in rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Research، 36: 758-767.
9. Balcázar, J. L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., Múzquiz, J. L. 2006. The role of probiotics in aquaculture. Veterinary microbiology, 114(3-4): 173-186.
10. Blaxhall, P. C., Daisley, K. W. 1973. Routine haematological methods for use with fish blood. Journal of fish biology, 5(6): 771-781.
11. Brunt, J., Austin, B. 2005. Use of a probiotic to control lactococcosis and streptococcosis in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of fish diseases, 28(12): 693-701.
12. Brunt, J., Newaj‐Fyzul, A., Austin, B. 2007. The development of probiotics for the control of multiple bacterial diseases of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 30(10): 573-579.
13. Carnevali, O., de Vivo, L., Sulpizio, R., Gioacchini, G., Olivotto, I., Silvi, S., Cresci, A. 2006. Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258(1-4): 430-438.
14. Dimitroglou, A., Merrifield, D. L., Moate, R., Davies, S. J., Spring, P., Sweetman, J., Bradley, G. 2009. Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of animal science, 87(10): 3226-3234.
15. Drabkin, D. I. 1945. Crystallographic and optical properties of human hemoglobin. A proposal for the standarization of hemoglobin. American Journal of Medicine, 209: 268-270.
16. Ferguson, R. M., Merrifield, D. L., Harper, G. M., Rawling, M. D., Mustafa, S., Picchietti, S., Davies, S. J. 2010. The effect of Pediococcus acidilactici on the gut microbiota and immune status of on‐growing red tilapia (Oreochromis niloticus). Journal of applied microbiology, 109(3): 851-862.
17. Garibaldi, L. 2012. The FAO global capture production database: a six-decade effort to catch the trend. Marine Policy, 36(3): 760-768.
18. Hoseinifar, S. H., Khalili, M., Rostami, H. K., Esteban, M. Á. 2013. Dietary galactooligosaccharide affects intestinal microbiota, stress resistance, and performance of Caspian roach (Rutilus rutilus) fry. Fish & Shellfish Immunology, 35(5): 1416-1420.
19. Hoseinifar, S. H., Roosta, Z., Hajimoradloo, A., Vakili, F. 2015. The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri). Fish & shellfish immunology, 42(2): 533-538.
20. Irianto A., Austin B. 2002. Probiotics in aquaculture. Journal of fish diseases, 25(11): 633-642. doi.org/10.1046/j.1365-2761.2002.00422.x
21. Houston, A. H., Cyr, D. 1974. Thermoacclimatory variation in the haemoglobin systems of goldfish (Carassius auratus) and rainbow trout (Salmo gairdneri). Journal of Experimental Biology, 61(2): 455-461
22. Joborn، A., Olsson، J. C., Westerdahl، A., Conway، P. L., Kjelleberg، S. 1997. Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extracts by Carnobacterium sp. strain K1. Journal of Fish Diseases, 20: 383-392.
23. Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J., Gibson, L. 2008. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture, 274(1): 1-14.
24. Keysami M. A., Mohammadpour M., Saad C.R. 2012. Probiotic activity of Bacillus subtilis in juvenile fresh water prawn, Macrobrachium rosenbergii (de Man) at different methods of administration to the feed. Jounal of Aquaculture International, 20: 499-511. doi: 10.1007/s10499-011-9481-5
25. Keysami M.A., Mohammadpour M. 2013. Effect of Bacillus subtilis on Aeromonas hydrophila infection resistance in juvenile freshwater prawn, Macrobrachium rosenbergii (de Man). Aquaculture International, 21: 553-562. doi 10, 1007/s10499-012-9588-3.8.
26. Keysami, M. A., Shalmani, A. Z., Mojdehi, M. A. 2021. Effectiveness of Bacillus subtilis on growth and survival of common carp larva in non-earthen ponds. Journal of Animal Environment, 13(3): 261-268.
27. Khattab, Y. A., Shalaby, A. M., Abdel-Rhman, A. 2005. Use of probiotic bacteria as growth promoters, anti-bacterial and their effects on physiological parameters of Oreochromis niloticus. Aquaculture, 28: 74-81.
28. Kim, D. H., Austin, B. 2006. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish & shellfish immunology, 21(5): 513-524.
29. Lara-Flores, M., Olvera-Novoa, M. A., Guzmán-Méndez, B. E., López-Madrid, W. 2003. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture, 216(1-4): 193-201.
30. Lee، J. S.، Cheng، H.، Damte، D.، Lee، S. J.، Kim، J. C.، Rhee، M. H., Park، S. C. 2013. Effects of dietary supplementation of Lactobacillus pentosus PL11 on the growth performance، Immune and antioxidant systems of Japanese eel Anguilla japonica challenged with Edwardsiella tarda. Fish and Shellfish Immunology, 34: 756-761.
31. McLoughlin, I. J., Voss, A. L., Hale, J. D., Jain, R. 2024. Cosmetic efficacy of the topical probiotic Micrococcus luteus Q24 in healthy human adults. Cosmetics, 11(4): 122.
32. Mazurkiewicz, J., Przybył, A., Sip, A., Grajek, W. 2007. Effect of Carnobacterium divergens and Enterococcus hirae as probiotic bacteria in feed for common carp, Cyprinus carpio L. Fisheries & Aquatic Life, 15(2): 79-92.
33. Moriarty, D. J. W. 1990. Interactions of microorganisms and aquatic animals, particularly the nutritional role of the gut flora. Microbiology in poecilotherms, 217-222.
34. Mortazavian, A., Seyed Hadi, R., Mohammad Reza, E., Sara, S. 2007. Principles and methods of microencapsulation of Probiotic microorganisms. Iranian Journal of biotechnology, 5(1): 1-18.
35. Nwachukwu, U., George-Okafor, U., Ozoani, U., Ojiagu, N. 2019. Assessment of probiotic potentials of Lactobacillus plantarum CS and Micrococcus luteus CS from fermented milled corn-soybean waste-meal. Scientific African, 6: e00183.
36. Oyetayo, V. O. and Oyetayo, F. L. 2005. Potential of probiotics as biotherapeutic agents targeting the innate immune system. African Journal of biotechnology, 4(2): 123-127.
37. Panigrahi, A., Kiron, V., Kobayashi, T., Puangkaew, J., Satoh, S., Sugita, H. 2004. Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Veterinary immunology and immunopathology, 102(4): 379-388.
38. Reid, G., Sanders, M.E., Gaskins, H.R., Gibson, G.R., Mercenier, A., Rastall, R., Roberfroid, M., Rowland, I., Cherbut, C., Klaenhammer, T.R. 2003. New scientific paradigms for probiotics and prebiotics. Journal of clinical gastroenterology, 37(2): 105-118.
39. Rengpipat, S., Rukpratanporn, S., Piyatiratitivorakul, S., Menasaveta, P. 2000. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture, 4: 271-288.
40. Rokka, S., Rantamaki, P. 2010. Protecting probiotic bacteria by microencapsulation. Challenges for Industerial applications. European food Research and Technology, 231(1): 1-12.
41. Sugita, H., Miyajima, C., Deguchi, Y. 1991. The vitamin B12-producing ability of the intestinal microflora of freshwater fish. Aquaculture, 92: 267-276.
42. Sun, Y. Z., Yang, H. L., Ma, R. L., Lin, W. Y. 2010. Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish & Shellfish Immunology, 29(5): 803-809.
43. Ta'ati, R., Soltani, M., Bahmani, M., Zamini, A. A. 2011. Growth performance, carcass composition, and immunophysiological indices in juvenile great sturgeon (Huso huso) fed on commercial prebiotic, Immunoster. Iranian Journal of Fisheries Sciences, 10(2), 324-335.
44. Talas, Z. S., Gulhan, M. F. 2009. Effects of various propolis concentrations on biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss). Ecotoxicology and Environmental Safety, 72: 1994-1998.
45. Tookmehchi A., Shamsi H., Meshkini S., Delshad R., Ghasemi Moghanjoei A. 2012. Dietary administration of vitamin C and Lactobacillus rhamnosus in combination enhanced the growth and innate immune response of the rainbow trout, Oncorhynchus mykiss. Iranian Scientific Fisheries Journal, 21(3): 13-22. doi: 10.22092/ISFJ.2017.110067
46. Vazquez, J. A., González, M., Murado, M. A. 2005. Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture, 4: 149-161.
47. Verschuere, L., Rombaut, G., Sorgeloos, P., Verstraete, W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and molecular biology reviews, 64: 655-671.
48. VidyaLaxme B., Rovetto A., Grau R., Agrawal R. 2014. Synergistic effects of probiotic Leuconostoc mesenteroides and Bacillus subtilis in malted ragi (Eleucine corocana) food for antagonistic activity against V. cholerae and other beneficial properties. Journal of food science and technology, 51: 3072-3082. doi: 10.1007/s13197-012-0834-5.
49. Vine N.G., Leukes W.D., Kaiser H. 2006. Probiotics in marine larviculture. FEMS microbiology reviews, 30(3): 404-427. doi.org/10.1111/j.1574-6976.2006.00017.x
50. Wang Y. B. 2007. Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei. Aquaculture, 1: 259-264.
51. Weston, D. P. 1996. Environmental considerations in the use of antibacterial drugs in aquaculture, 1996: 140-165.
52. Yahav D., Franceschini E., Koppel F., Turjeman A., Babich T., Bitterman R., Neuberger A., Ghanem-Zoubi N., Santoro A., Eliakim-Raz N., Pertzov B. 2019. Seven versus 14 days of antibiotic therapy for uncomplicated gram-negative bacteremia: a noninferiority randomized controlled trial. Clinical Infectious Diseases, 69(7): 1091-1098.050. doi: 10.1093/cid/ciy1054.