اثرات محافظتی سولفات منیزیم بر زخم معده القاء شده با اتانول در موشهای کوچک آزمایشگاهی نژادNMRI
محورهای موضوعی :
فصلنامه زیست شناسی جانوری
رویا رستمی
1
,
اکرم عیدی
2
,
پژمان مرتضوی
3
,
شهربانو عریان
4
1 - گروه زیست شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه زیست شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه پاتولوژی، دانشکده علوم دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه زیست شناسی، دانشکده علوم زیست شناسی، دانشگاه خوارزمی، تهران، ایران
تاریخ دریافت : 1400/06/12
تاریخ پذیرش : 1400/08/19
تاریخ انتشار : 1401/06/01
کلید واژه:
اتانول,
زخم معده,
موش نژاد NMRI,
سولفات منیزیم,
آنزیمهای آنتیاکسیدانی,
چکیده مقاله :
بیماری زخم معده، یک بیماری آسیب رسان به مخاط دستگاه گوارش با شیوع گسترده جهانی است. یکی از علتهای این بیماری در جوامع غربی مصرف اتانول میباشد. هدف از مطالعه حاضر، درمان این بیماری به وسیله ی پیش تیمار با سولفات منیزیم است. در این مطالعه از 66 موش کوچک آزمایشگاهی نر نژاد NMRI استفاده شد. طول دوره مطالعه 15 روز بوده است. حیوانات در 11 گروه بصورت تصادفی شامل: کنترل سالم، کنترل زخم معده (اتانول ml/kg10)، استاندارد (امپرازول 40 میلیگرم/کیلوگرم وزن بدن)+ اتانول، سالم تجربی (سولفات منیزیم 50، 100، 200 و 300 میلیگرم/کیلوگرم) و زخم معده تجربی (سولفات منیزیم با دوزهای 50، 100، 200 و 300 میلیگرم/کیلوگرم+ اتانول) تقسیم شدند. پس از اتمام دوره تیمار، میزان پارامترهای استرس اکسیداتیو در بافت معده ارزیابی بیوشیمیایی شد. نتایج تحقیق حاضر نشان داد که میزان فعالیت آنزیم های کاتالاز، گلوتاتیون پراکسیداز، سوپراکسید دیسموتاز در بافت معده گروههای کنترل زخم معده در مقایسه با کنترل سالم کاهش معنی داری یافت. تیمار سولفات منیزیم در حیوانات سالم تغییر معنی داری در میزان فعالیت آنزیم های کاتالاز، گلوتاتیون پراکسیداز، سوپراکسید دیسموتاز در بافت معده ایجاد ننمود. تیمار سولفات منیزیم در حیوانات با القا زخم معده موجب افزایش معنی دار میزان فعالیت آنزیم های کاتالاز، گلوتاتیون پراکسیداز، سوپراکسید دیسموتاز در بافت معده گردید. همچنین نتایج تحقیق حاضر نشان داد که میزان مالون دی الدیید در بافت معده گروه کنترل زخم معده در مقایسه با کنترل سالم افزایش معنی داری یافت. تیمار سولفات منیزیم در حیوانات سالم تغییر معنی داری در میزان مالون دی الدیید در بافت معده ایجاد ننمود. تیمار سولفات منیزیم در حیوانات با القا زخم معده موجب کاهش معنی دار میزان مالون دی الدیید در بافت معده گردید. نتایج حاصل از این مطالعه نشان میدهد که، پیش درمان با سولفات منیزیم باعث کاهش استرس اکسیداتیو و آسیب کمتر بافتی در بافت معده میشود.
چکیده انگلیسی:
Gastric ulcers are common digestive disorders involving stomach mucosal lesions with worldwide prevalence. There are different reasons for peptic ulcers. One common reason among west societies is ethanol consumption. The aim of the present study is pretreatment by magnesium sulfate. In this study 66 male NMRI mice were randomly divided into 11 groups and the administered mice were followed up daily for 15 days. These groups include control group (intact), control ulcer group (ethanol 10 mg/kg), standard group (omeprazole 40 mg/kg and ethanol), experimental groups (magnesium sulfate 50, 100, 200, 300 mg/kg), and experimental ulcer groups (magnesium sulfate 50, 100, 200, 300 mg/kg and ethanol). At the end of the relevant period, the levels of oxidative stress parameters were biochemically evaluated. The results of this study revealed that the activity of catalase, glutathione peroxidase and superoxide dismutase in control ulcer group significantly decreased compared to the control group. Oral administration of magnesium sulfate produced no significant effect on catalase, glutathione peroxidase and superoxide dismutase activities in intact animals. Animals in experimental ulcer groups represented a great increase in catalase, glutathione peroxidase, and superoxide dismutase levels over the treatment by magnesium sulfate. Moreover, our results showed that the amount of malondialdehyde in control ulcer group was significantly increased compared to the control group. Pre-treatment with magnesium sulfate caused no significant change on the amount of malondialdehyde in control group, while the level of malondialdehyde was considerably decreased in experimental ulcer groups. Furthermore, our results demonstrated that a pretreatment with MgSO4 could notably reduce oxidative stress and gastric lesions.
منابع و مأخذ:
Abad C., Vargas F.R., Zoltan T., Proverbio T., Piñero S., Proverbio F., Marín R., 2015. Magnesium sulfate affords protection against oxidative damage during severe preeclampsia. Placenta, 36(2): 179-185.
Abdulla M.A., Ahmed K.A.A., Al-Bayaty F.H., Masood Y., 2010. Gastroprotective effect of Phyllanthus niruri leaf extract against ethanol-induced gastric mucosal injury in rats. African Journal of Pharmacy and Pharmacology, 4(5): 226-230.
Adewoye E.O., Salami A.T., 2013. Anti-ulcerogenic mechanism of magnesium in indomethacin induced gastric ulcer in rats. Nigerian Journal of Physiological Sciences, 28(2): 193-199.
Ateufack G., Nguelefack T.B., Wabo H.K., Watcho P., Tane P., Kamanyi A., 2006. Antiulcer effects of the aqueous and organic extracts of the stem bark of Anthocleista vogelii. in rats. Pharmaceutical biology, 44(3): 166-171.
Bafna P., Balaraman R., 2004. Anti-ulcer and antioxidant activity of DHC-1, a herbal formulation. Journal of Ethnopharmacology, 90(1): 123-127.
Bhattacharyya A., Chattopadhyay, Mitra S., Crowe S.E., 2014. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological Reviews, 94(2): 329-354.
Boligon A.A., FreitasB., Brum T.F., Waczuk E.P., Klimaczewski C.V., Ávila D.S ., Athayde M.L ., Freitas Bauermann L., 2014. Antiulcerogenic activity of Scutia buxifolia on gastric ulcers induced by ethanol in rats. Acta Pharmaceutica Sinica B, 4(5): 358-367.
Cadirci E., Suleyman, Aksoy H., Halici Z., Ozgen U., Koc A., Ozturk N., 2007. Effects of Onosma armeniacum root extract on ethanol-induced oxidative stress in stomach tissue of rats. Chemico-Biological Interactions, 170(1): 40-48.
Cowan A., Earnest D.L., Ligozio G., Rojavin M.A., 2005. Omeprazole-induced slowing of gastrointestinal transit in mice can be countered with tegaserod. European Journal of Pharmacology, 517(1-2): 127-131.
Silva L.M., Allemand, Mendes D.A.G.B., Dos Santos A.C., André E., Souza L.M., Cipriani T.R., Dartora N., Andrade Marques M.C., Baggio C.H., Werner M.F., 2013. Ethanolic extract of roots from Arctium lappa L. accelerates the healing of acetic acid-induced gastric ulcer in rats: Involvement of the antioxidant system. Food and Chemical Toxicology, 51: 179-187.
Ferreira M.de.P., Nishijima C.M., Seito L.N., Dokkedal A.L., Lopes-Ferreira M., Di Stasi L.C., Vilegas W.,Hiruma-Lima, C.A., 2008. Gastroprotective effect of Cissus sicyoides (Vitaceae): involvement of microcirculation, endogenous sulfhydryls and nitric oxide. Journal of Ethnopharmacology, 117(1): 170-174.
deFoneska A., Kaunitz J.D., 2010. Gastroduodenal mucosal defense. Current Opinion in Gastroenterology, 26(6): 604-610.
Ortiz C., Arias F.A., Prados C.M.A ., Gutiérrez J.J ., Rodríguez A.L., Alonso A.O., Santiago E.R., Rodríguez-Téllez M., Mendoza M.I.V., Castro L.A., Sánchez A.A., Bellido R.J.A., Pérez F.B., Fernández M.C., Tomé F.G., 2016. Proton-pump inhibitors adverse effects: a review of the evidence and position statement by the Sociedad Española de Patología Digestiva. Revista Espanola de Enfermedades Digestivas, 108(4): 207-224.
Zeng X., Xue Y., Tian Q., Sun R., An R., 2016. Effects and Safety of Magnesium Sulfate on Neuroprotection. Medicine, 95(1): e2451.
Durlach J., Guiet-Bara A., Pagès N., Bac P., Bara M., 2005. Magnesium chloride or magnesium sulfate: a genuine question. Magnesium Research, 18(3): 187-192.
Eidi A., Mortazavi, Moradi F., Haeri Rohani A., Safi Sh., 2013. Magnesium attenuates carbon tetrachloride-induced hepatic injury in rats. Magnesium Research, 26 (4): 165-175.
El-Missiry M.A., El-Sayed I.H., Othman A.I., 2001. Protection by metal complexes with SOD-mimetic activity against oxidative gastric injury induced by indometacin and ethanol in rats. Annals of Clinical Biochemistry, 38(6): 694-700.
Eshraghi T., Mortazavi , Asghari A., Tavangar S.M., 2015. Magnesium protects against bile duct ligation-induced liver injury in male Wistar rats. Magnesium Research, 28(1): 32-45.
Fern´andez M., Marín, Proverbio F., Ruette F., 2021. Effect of magnesium sulfate in oxidized lipid bilayers properties by using molecular dynamics. Biochemistry and Biophysics Reports, 26: 100998
Fischer S.G.L., Collins S., Boogaard S., Loer S.A., Zuurmond W.W.A., Perez R.S.G.M., 2013. Intravenous magnesium for chronic complex regional pain syndrome type 1 (CRPS-1). Pain Medicine, 14(9): 1388-1399.
Ghahramani R., Abbasian A.S., Shafaee S., 2009. Prevelence of celiac disease in patients with different types of dyspepsia. Journal of Isfahan Medical School, 27(93): 65-73. (In Persian)
Kalantari H., Nourian S.M., 2011. Prevalance of Peptic Ulcer Versus Non Ulcer Dyspepsia in Patients which were Admitted for Endoscopy. Journal of Isfahan Medical School, 28(118): 1304- 1309 (In Persian)
Komar O.M., KizlovaM., Trylevych O.D., Kravchenko V.V., 2018. Risk factors for adverse course of gastric and duodenal peptic ulcer. Wiadomosci Lekarskie (Warsaw, Poland), 71(1 pt 2): 160-164.
Laudato M., Pescitelli L., Capasso R., 2013. Natural products of mineral origin. Natural product communications, 8(3): 419-423.
Lee K.J., ChoiH., Khanal T., Hwang Y.P., Chung Y.C., Jeong H.G., 2008. Protective effect of caffeic acid phenethyl ester against carbon tetrachloride-induced hepatotoxicity in mice. Toxicology, 248(1): 18-24.
Markiewicz-Górka I., Markiewicz-Górka, Pawlas K., Jaremków A., Januszewska L., Pawłowski P., Pawlas N., 2019. Alleing effect of α-lipoic acid and magnesium on cadmium-induced inflammatory processes, oxidative stress and bone metabolism disorders in Wistar rats. International journal of environmental research and public health, 16(22): 4483.
Massoomi F., Savage J., Destache C.J., 1993. Omeprazole: a comprehensive review. The Journal of Human Pharmacology and Drug Therapy, 13(1): 46-59.
Matović V., Buha, Bulat Z., Ðukić-Ćosić D., Miljković M., Ivanišević J., Kotur-Stevuljević J., 2012. Route-dependent effects of cadmium/cadmium and magnesium acute treatment on parameters of oxidative stress in rat liver. Food and Chemical Toxicology, 50(3-4): 552-557.
Müller D.C., Duff E.M.C., Stern K.L., 2012. Timeline: 200 years of the New England Journal of Medicine. New England Journal of Medicine, 366(1): e3.
Naito Y., Yoshikawa T., Matsuyama K., Yagi N., Arai M., Nakamura Y., Kaneko T., Yoshida N., Kondo M., 1998. Neutrophils, lipid peroxidation, and nitric oxide in gastric reperfusion injury in rats. Free Radical Biology and Medicine, 24(3): 494-502.
Nazarbahjat N., Kadir F.A., Ariffin A., Abdulla M.A., Abdullah Z., Yehye W.A., 2016. Antioxidant properties and gastroprotective effects of 2-(ethylthio) benzohydrazones on ethanol-induced acute gastric mucosal lesions in rats. Public Library of Science one, 11(6): e0156022.
Oluwole, F.S., Ayo J.A., OmolasoO., Emikpe B.O., Adesanwo J.K., 2008. Methanolic extract of Tetracera potatoria, an antiulcer agent increases gastric mucus secretion and endogenous antioxidants. Nigerian Journal of Physiological Sciences, 23(1-2): 79-83.
Rehm S., Sommer R., Deerberg F., 1987. Spontaneous nonneoplastic gastric lesions in female Han: NMRI mice, and influence of food restriction throughout life. Veterinary pathology, 24(3): 216-225.
Ren S., Wei Y., Wang R., Wei S., Wen J., Yang T., Chen X., Wu S., Jing M., Li H., Wang M., Zhao Y., 2020. Rutaecarpine Ameliorates Ethanol-Induced Gastric Mucosal Injury in Mice by Modulating Genes Related to Inflammation, Oxidative Stress and Apoptosis. Frontiers in Pharmacology, 11:600295.
Sannomiya M., Fonseca V.B., da Silva M.A., Rocha L.R.M., dos Santos,L.C., Hiruma-Lima C.A., Souza Brito A.R.M., Vilegas W., 2005. Flavonoids and antiulcerogenic activity from Byrsonima crassa leaves extracts. Journal of Ethnopharmacology, 97(1): 1-6.
Sayehmiri K., Tavan H., 2016. Systematic review and meta-analysis methods prevalence of peptic ulcer in IRAN. Govaresh, 20(4): 250-8. (In Persian)
Sharma R., Sharma V., 2012. Effect of magnesium sulphate versus phenytoin on the hospital length of stay of patients of eclampsia and severe preeclampsia. Journal of Chemical and Pharmaceutical Research, 4(4): 1921-1924.
Sid B., Verrax J., Calderon P.B., 2013. Role of oxidative stress in the pathogenesis of alcohol-induced liver disease. Free Radical Research, 47(11): 894-904.
Takaya J., Iharada, Okihana H., Kaneko K., 2012. Down-regulation of hepatic phosphoenolpyruvate carboxykinase expression in magnesium-deficient rats. Magnesium Research, 25(3): 131-139.
Yang Y., Wu Z., Chen Y., Qiao J., Gao M., Yuan J., Nie W., Guo Y., 2006. Magnesium deficiency enhances hydrogen peroxide production and oxidative damage in chick embryo hepatocyte in vitro. Biometals, 19(1): 71-81.
Yeligar S.M., Chen M.M., Kovacs E. J., Sisson J.H., Burnham E.L., Brown L.A. S., 2016. Alcohol and lung injury and immunity. Alcohol, 55: 51-59
_||_