Ameliorative nature of flavonoid naringin: A comprehensive review of antitoxic effects
Subject Areas : Phytochemistry: Isolation, Purification, CharacterizationZorawar Singh 1 * , Shivam Sharma 2 , Adeshwinder Kaur 3
1 - Department of Zoology, Khalsa College, Amritsar 143001, Punjab, India
2 - Department of Zoology, Khalsa College, Amritsar 143001, Punjab, India
3 - Department of Zoology, Khalsa College, Amritsar 143001, Punjab, India
Keywords: Antioxidant, Malondialdehyde, Oxidative stress, Flavonoids, Amelioration, anti-toxicity, naringin,
Abstract :
Naringin is a flavonoid abundantly found in Citrus L. spp. with diverse applications. The present review emphasizes on the ameliorative role of naringin against hepatotoxicity, neurotoxicity, renal toxicity and cardiotoxicity. Naringin has been found to be a strong antioxidant and beneficial in inflammation cases. Its supplementation revealed a drop in pathological changes in liver, brain and kidney tissues in hyperammonemia conditions. Naringin also regulates the expressions of glutamine synthetase, neuronal nitric oxide and soluble guanylate cyclase. It also inhibits some virus activities including herpes simplex. Treatment with naringin was found to be associated with controlled serum creatinine, blood urea nitrogen, bilirubin, aspartate transaminase, alanine transaminase and low-density lipoproteins. It has also been found to possess ameliorative properties against cardiac toxicity and hypertrophy. It improves myocardial fibrosis by modulating p38 and PKC-beta protein expressions. It also enhances oxidative enzyme activities and regulate the increase in malondialdehyde, protein carbonyls and tumour necrosis factor-alpha concentrations. Naringin, as one of the key flavonoids, possesses enormous potential to mitigate the effects of harmful drugs. It is a robust antitoxic agent revealing resilient action against hepato-, neuro-, renal and cardio-toxicity. Naringin may be used as a strong therapeutic agent to cure disease like herpes, diabetes, alcoholism and heart failure.
Alvarez-Gonzalez, I., Madrigal-Bujaidar, E., Dorado, V., Espinosa-Aguirre, J.J., 2001. Inhibitory effect of naringin on the micronuclei induced by ifosfamide in mouse, and evaluation of its modulatory effect on the Cyp3a subfamily. Mutat. Res. 480-481, 171-178.
Attia, S.M., 2008. Abatement by naringin of lomefloxacin-induced genomic instability in mice. Mutagenesis 23, 515-521.
Amudha, K., Pari, L., 2011. Beneficial role of naringin, a flavanoid on nickel induced nephrotoxicity in rats. Chem. Biol. Interact. 193, 57-64.
Alam, M.A., Subhan, N., Rahman, M.M., Uddin, S.J., Reza, H.M., Sarker, S.D., 2014. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. 5, 404-417.
Adil, M., Kandhare, A.D., Visnagri, A., Bodhankar, S.L., 2015. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-beta, and TNF-alpha. Ren Fail. 37, 1396-1407.
Adil, M., Kandhare, A.D., Ghosh, P., Bodhankar, S.L., 2016a. Sodium arsenite-induced myocardial bruise in rats: Ameliorative effect of naringin via TGF-beta/Smad and Nrf/HO pathways. Chem. Biol. Interact. 253, 66-77.
Adil, M., Kandhare, A.D., Ghosh, P., Venkata, S., Raygude, K.S., Bodhankar, S.L., 2016b. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: role of FXR and KIM-1. Ren Fail. 38, 1007-1020.
Adebiyi, A.O., Adebiyi, O.O., Owira, P.M., 2016a. Naringin mitigates cardiac hypertrophy by reducing oxidative stress and inactivating C-Jun nuclear kinase-1 protein in type I Diabetes. J. Cardiovasc. Pharmacol. 67, 136-144.
Adebiyi, O.A., Adebiyi, O.O., Owira, P.M., 2016b. Naringin reduces hyperglycemia-induced cardiac fibrosis by relieving oxidative stress. PLoS. One. 11, e0149890.
Bacanli, M., Basaran, A.A., Basaran, N., 2015. The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food Chem. Toxicol. 81, 160-170.
Chadha, P., Ahmed, G., Singh, Z., 2012. Genotoxic biomonitoring of human population exposed to pesticides. J. Exp. Zoology India 16, 239-244.
Chandramohan, Y., Parameswari, C.S., 2013. Therapeutic efficacy of naringin on cyclosporine (A) induced nephrotoxicity in rats: involvement of hemeoxygenase-1. Pharmacol. Rep. 65, 1336-1344.
Chtourou, Y., Aouey, B., Kebieche, M., Fetoui, H., 2015. Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-kappaB and P53 signaling pathways. Chem. Biol. Interact. 239, 76-86.
Celano R., Campone L., Pagano I., Carabetta, S., Di Sanzo, R., Rastrelli, L., Piccinelli, A.L., Russo, M., 2018. Characterisation of nutraceutical compounds from different parts of particular species of Citrus sinensis ‘Ovale Calabrese’ by UHPLC-UV-ESI-HRMS. Nat. Product Res. 23, 1-8. DOI: 10.1080/14786419.2018.1443102
Ding, P., Tang, Q., Chen, L., 2009. Effects of naringin on proliferation, differentiation and matrix mineralization of MC3T3-E1 cells. Zhongguo Zhong. Yao Za Zhi. 34, 1712-1716.
Frezza, C., Venditti, A., Serafini, I., Carassiti, A., Foddai, S., Bianco, A., Serafini, M., 2017. Phytochemical characteristics of Galeopsis ladanum subsp. angustifolia (Ehrh. ex Hoffm.) Gaudin collected in Abruzzo region (Central Italy) with chemotaxonomic and ethnopharmacological implications. Trends Phytochem. Res. 1(2), 61-68.
Haque, M.R., Ansari, S.H., 2018. Antihyperlipidemic activity of a unani formulation in high fat diet-induced obese murin model. Trends Phytochem. Res. 2(2), 83-90.
Jagetia, A., Jagetia, G.C., Jha, S., 2007. Naringin, a grapefruit flavanone, protects V79 cells against the bleomycin-induced genotoxicity and decline in survival. J. Appl. Toxicol. 27, 122-132.
Jain, M., Parmar, H.S., 2011. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm. Res. 60, 483-491.
Jung, U.J., Kim, S.R., 2014. Effects of naringin, a flavanone glycoside in grapefruits and citrus fruits, on the nigrostriatal dopaminergic projection in the adult brain. Neural Regen. Res. 9, 1514-1517.
Jucá, M.M., Cysne Filho, F.M.S., de Almeida, J.C., Mesquita, D.D.S., Barriga, J.R.D.M., Dias, K.C.F., Barbosa, T.M., Vasconcelos, L.C., Leal, L.K.A.M., Ribeiro, J.E., Vasconcelos, S.M.M., 2018. Flavonoids: biological activities and therapeutic potential. Nat. Prod. Res. 16:1-14. DOI: 10.1080/14786419.2018.1493588
Kaul, T.N., Middleton E Jr, Ogra, P.L., 1985. Antiviral effect of flavonoids on human viruses. J Med Virol. 15, 71-79.
Kumar, A., Dogra, S., Prakash, A., 2010. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats. J. Med. Food 13, 976-984.
Kawaguchi, K., Maruyama, H., Hasunuma, R., Kumazawa, Y., 2011. Suppression of inflammatory responses after onset of collagen-induced arthritis in mice by oral administration of the Citrus flavanone naringin. Immunopharmacol. Immunotoxicol. 33, 723-729.
Kwatra, M., Kumar, V., Jangra, A., Mishra, M., Ahmed, S., Ghosh, P., Vohora, D., Khanam, R., 2016. Ameliorative effect of naringin against doxorubicin-induced acute cardiac toxicity in rats. Pharm. Biol. 54, 637-647.
Karakousi, C., Gabrieli, C., Kokkalou, E., 2018. Chemical composition and biological activities of Indigofera hirsuta aerial parts’ methanol fractions.
Nat. Prod. Res. DOI: 10.1080/14786419.2018.1489390.
Keser, S., Keser, F., Karatepe, M., Kaygili, O., Tekin, S., Turkoglu, I., Demir, E., Yilmaz, O., Kirbag, S., Sandal, S., 2018. Bioactive contents, In vitro antiradical, antimicrobial and cytotoxic properties of rhubarb (Rheum ribes L.) extracts. Nat. Product Res. DOI: 10.1080/14786419.2018.1560294.
Li, P., Wang, S., Guan, X., Liu, B., Wang, Y., Xu, K., Peng, W., Su, W., Zhang, K., 2013. Acute and 13 weeks subchronic toxicological evaluation of naringin in Sprague-Dawley rats. Food Chem. Toxicol. 60, 1-9.
Li, P., Wang, S., Guan, X., Cen, X., Hu, C., Peng, W., Wang, Y., Su, W., 2014. Six months chronic toxicological evaluation of naringin in Sprague-Dawley rats. Food Chem. Toxicol. 66, 65-75.
Liu, H.R., Men, X., Gao, X.H., Liu, L.B., Fan, H.Q., Xia, X.H., Wang, Q.A., 2018. Discovery of potent and selective acetylcholinesterase (AChE) inhibitors: acacetin 7-O-methyl ether Mannich base derivatives synthesised from easy access natural product naringin. Nat. Product Res. 32 (6), 743-747.
Murunga, A.N., Miruka, D.O., Driver, C., Nkomo, F.S., Cobongela, S.Z., Owira, P.M., 2016. Grapefruit derived flavonoid naringin improves ketoacidosis and lipid peroxidation in type 1 diabetes rat model. PLoS. One. 11, e0153241.
Maatouk, M., Mustapha, N., Mokdad-Bzeouich, I., Chaaban, H., Ioannou, I., Ghedira, K., Ghoul, M., Chekir-Ghedira, L., 2017. Heated naringin mitigate the genotoxicity effect of Mitomycin C in BALB/c mice through enhancing the antioxidant status. Biomed. Pharmacother. 97, 1417-1423.
Mohammadhosseini, M., Sarker, S.D., Akbarzadeh, A., 2017. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 199, 257-315.
Mohammadhosseini, M., 2017. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Ind. Crops Prod. 105, 164-192.
Mohammadhosseini, M., Venditti, A., Sarker, S.D., Nahar, L., Akbarzadeh, A., 2019. The genus Ferula: Ethnobotany, phytochemistry and bioactivities – A review. Ind. Crops Prod. 129, 350-394.
Oluwafeyisetan, A., Olubunmi, A., Peter, O., 2016. Naringin ameliorates HIV-1 nucleoside reverse transcriptase inhibitors- induced mitochondrial toxicity. Curr. HIV. Res. 14, 506-516.
Pereira, R.M., Andrades, N.E., Paulino, N., Sawaya, A.C., Eberlin, M.N., Marcucci, M.C., Favero, G.M., Novak, E.M., Bydlowski, S.P., 2007. Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules 12, 1352-1366.
Punithavathi, V.R., Anuthama, R., Prince, P.S., 2008. Combined treatment with naringin and vitamin C ameliorates streptozotocin-induced diabetes in male Wistar rats. J. Appl. Toxicol. 28, 806-813.
Pari, L., Amudha, K., 2011. Hepatoprotective role of naringin on nickel-induced toxicity in male Wistar rats. Eur. J. Pharmacol. 650, 364-370.
Pari, L., Chandramohan, R., 2017. Modulatory effects of naringin on hepatic key enzymes of carbohydrate metabolism in high-fat diet/low-dose streptozotocin-induced diabetes in rats. Gen. Physiol Biophys. 36, 343-352.
Pantelić, M., Dabić Zagorac, D., Gašić, U., Jović, S., Bešlić, Z., Todić, S., Natić, M., 2017. Phenolic profiles of Serbian autochthonous variety ‘Prokupac’ and monovarietal international wines from the Central Serbia wine region. Nat. Prod. Res. 32(19), 2356-2359.
Rajadurai, M., Stanely Mainzen, P.P., 2006. Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology 228, 259-268.
Ramakrishnan, A., Vijayakumar, N., Renuka, M., 2016. Naringin regulates glutamate-nitric oxide cGMP pathway in ammonium chloride induced neurotoxicity. Biomed. Pharmacother. 84, 1717-1726.
Rathi, V.K., Das, S., Parampalli, R.A., Rao, B.S.S., 2017. Naringin abates adverse effects of cadmium-mediated hepatotoxicity: An experimental study using HepG2 cells. J. Biochem. Mol. Toxicol. 31.
Reddenna, L., Venkatesh, P., Kumar, K.S., Reddy, K.S.K., 2017. Genotoxicity. Pharma Tutor 5, 23-34.
Rivoira, M., Rodriguez, V., Picotto, G., Battaglino, R., Tolosa de, T.N., 2018. Naringin prevents bone loss in a rat model of type 1 Diabetes mellitus. Arch. Biochem. Biophys. 637, 56-63.
Sharma, A.K., Bharti, S., Ojha, S., Bhatia, J., Kumar, N., Ray, R., Kumari, S., Arya, D.S., 2011. Up-regulation of PPARgamma, heat shock protein-27 and -72 by naringin attenuates insulin resistance, beta-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br. J. Nutr. 106, 1713-1723.
Singh, Z., Chadha, P., 2012. Health Concerns in Welding Industry. Int. J. Enh. Res. Sci. Tech. Eng. 2, 1-5.
Singh, Z., Chadha, P., 2013. Oxidative stress assessment among iron industry grinders. Biochem. Cell. Arch. 12, 65-68.
Singh, Z., Chadha, P., Sharma, S., 2013. Evaluation of oxidative stress and genotoxicity in battery manufacturing workers occupationally exposed to lead. Tox. Int. 20, 95-100.
Singh, Z., Randhawa, J.K., 2014. Assessment of DNA Damage in people living near textile industries by comet assay. Biosci. int. 3, 1-5.
Singh, Z., Chadha, P., 2014. DNA Damage due to inhalation of complex metal particulates among foundry workers. Adv. Env. Biol. 8, 225-230.
Singh, Z., Chadha, P., 2015a. Assessment of DNA Damage as an index of genetic toxicity in welding micro-environments among iron based industries. Tox. Ind. Health 32, 1817-1824.
Singh, Z., Chadha, P., 2015b. Human health hazard posed by textile dyes: A genotoxic perspective. J. Hum. Health 1, 42-45.
Singh, Z., Randhawa, J.K., Singh, S., Deepshikha, 2015. Buccal micronucleus test as a reliable tool to assess genotoxicity. Curr. Rep. Sci. Tech. 1, 27-42.
Singh, Z., Sharma, S., Kaur, A., 2018. Antitoxic effects of naringin: A flavonoid with diverse biological activities. World J. Pharm. Res. 7, 484-489.
Singh, Z., 2018. Flavonoids as wonder drugs for fighting oxidative stress. J. Fam. Med. Forecast 1, 1004.
Su, H., Li, Z., Fiati Kenston, S.S., Shi, H., Wang, Y., Song, X., Gu, Y., Barber, T., Aldinger, J., Zou, B., Ding, M., Zhao, J., Lin, X., 2017. Joint toxicity of different heavy metal mixtures after a short-term oral repeated-administration in rats. Int. J. Environ. Res. Public Health 14, 1164.
Takumi, S., Ikema, S., Hanyu, T., Shima, Y., Kurimoto, T., Shiozaki, K., Sugiyama, Y., Park, H.D., Ando, S., Furukawa, T., Komatsu, M., 2015. Naringin attenuates the cytotoxicity of hepatotoxin microcystin-LR by the curious mechanisms to OAT. Environ. Toxicol. Pharmacol. 39, 974-981.
Viswanatha, G.L., Shylaja, H., Moolemath, Y., 2017. The beneficial role of Naringin- a citrus bioflavonoid, against oxidative stress-induced neurobehavioral disorders and cognitive dysfunction in rodents: A systematic review and meta-analysis. Biomed. Pharmacother. 94, 909-929.
Vafaei, A, Mohamad, J., Karimi, E., 2018. HPLC profiling of phenolics and flavonoids of Adonidia merrillii fruits and their antioxidant and cytotoxic properties. Nat. Prod. Res. DOI: 10.1080/14786419.2018.1448810.
Venditti, A., Frezza, C., Serafini, I., Pulone, S., Scardelletti, G., Sciubba, F., Bianco, A., Serafini, M., 2018. Chemical profiling of the fruits of Styrax officinalis L. from Monti Lucretili (Latium region, Central Italy): Chemotaxonomy and nutraceutical potential. Trends Phytochem. Res. 2(1), 1-12.
Wang, H., Li, C., Li, J., Zhu, Y., Jia, Y., Zhang, Y., Zhang, X., Li, W., Cui, L., Li, W., Liu, Y., 2017. Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells. Iran J. Basic Med. Sci. 20, 408-414.
Xulu, S., Oroma Owira, P.M., 2012. Naringin ameliorates atherogenic dyslipidemia but not hyperglycemia in rats with type 1 diabetes. J. Cardiovasc. Pharmacol. 59, 133-141.
Xie, L., Hanyu, T., Futatsugi, N., Komatsu, M., Steinman, A.D., Park, H.D., 2014. Inhibitory effect of naringin on microcystin-LR uptake in the freshwater snail Sinotaia histrica. Environ. Toxicol. Pharmacol. 38, 430-437.
Yilmaz, D., Aydemir, N.C., Vatan, O., Tuzun, E., Bilaloglu, R., 2012. Influence of naringin on cadmium-induced genomic damage in human lymphocytes in vitro. Toxicol. Ind. Health 28, 114-121.
Yilmaz, D., Teksoy, O., Bilaloglu, R., Cinkilic, N., 2016. Anti-genotoxic effect of naringin against bleomycin-induced genomic damage in human lymphocytes in vitro. Drug Chem. Toxicol. 39, 119-123.
Yin, J., Wang, A.P., Li, W.F., Shi, R., Jin, H.T., Wei, J.F., 2018. Time-response characteristic and potential biomarker identification of heavy metal induced toxicity in zebrafish. Fish. Shellfish. Immunol. 72, 309-317.
Zhou J., Fang X., Wang J., et al., 2018. Structures and bioactivities of seven flavonoids from Osmanthus fragrans ‘Jinqiu’ essential oil extraction residues. Nat. Prod. Res. 32(5), 588-591.