Phytochemical constituents and pharmacological potential of Solanum khasianum C.B. Clarke., extracts: Special emphasis on its skin whitening, anti-diabetic, acetylcholinesterase and genotoxic activities
Subject Areas : Analytical Assessments of Bioactive CompoundsRoktim Gogoi 1 , Neelav Sarma 2 , Sudin Pandey 3 , Mohan Lal 4 *
1 - Medicinal, Economic and Aromatic Plant group, Biological Science and Technology Division CSIR-North East Institute of Science and Technology (NEIST), Jorhat Assam 785006|AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, U.P., India
2 - Medicinal, Economic and Aromatic Plant group, Biological Science and Technology Division CSIR-North East Institute of Science and Technology (NEIST), Jorhat Assam 785006|AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, U.P., India
3 - Medicinal, Economic and Aromatic Plant group, Biological Science and Technology Division CSIR-North East Institute of Science and Technology (NEIST), Jorhat Assam 785006|AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, U.P., India
4 - Medicinal and Aromatic plant group, CSIR-NEIST, Jorhat, Assam (India)
Keywords: Anti-inflammatory, Amylase, Acetylcholinesterase, <i>Solanum khasianum</i> C.B. Clarke, Tyrosinase, Solanaceae,
Abstract :
This study was designed to evaluate and compare the phytochemical constituents along with the bioactivities of Solanum khasianum C.B. Clarke. leaves (SKLME) and berries (SKBME) methanolic extracts. Alkaloids, flavonoids, saponins, steroids, terpenoids, phenols, oxalates and cardiac glycosides were present in SKLME and SKBME. Considerable amounts of phenolic and flavonoids were found in SKLME and SKBME. SKBME showed better antioxidant activity with an IC50 value of 20.68 μg/mL vs SKLME (38.30 μg/mL). SKBME and SKLME respectively showed anti-inflammatory activity with IC50 of 20.96 and 23.37 μg/mL. Apart from this, the present investigation also reports SKBME skin whitening ability, anti-diabetic potential and anti-cholinesterase activity with IC50 values of 33.97, 28.24, and 32.42 μg/mL, respectively. Furthermore, SKLME showed herbicidal property with a total germination rate of 9.06% at a concentration of 80 μg/mL. Bioactivity analysis revealed higher pharmacological importance of the SKBME than SKLME, as well.
Ahmad, I., Ijaz, F., Fatima, I., Ahmad, N., Chen, S., Afza, N., 2010. Xanthine oxidase/tyrosinase inhibiting, antioxidant and antifungal oxindole alkaloids from Isatis costata. Pharmaceut. Biol. 48(6), 716-721.
Akbaeri, M., Rasouli, H., Bahdor, T., 2012. Physiological and pharmaceutical effect of fe-nugreek: a review. Iosr. J. Pharm. 2(4), 49-53.
Alam, N.M., Roy, S., Anisuzzaman, S.M., Rafiquzzaman, M., 2012. Antioxidant activity of the ethanolic extracts of leaves, stems and fruits of Solanum nigrum. Phcog. Commn. 2, 67-71.
Anwikar, S., Bhirte, M., 2010. Study of the synergistic anti-inflammatory activity of Solanum xanthocarpum Schrad and Wendl and Cassia fistula Linn. Int. J. Ayurvede. Res. 1(3), 167-171.
Arnous, A., Makris, D.P., Kefalas, P., 2001. Effect of principal poly phenolic components in relation to antioxidant characteristics of aged red wines. J. Agric. Food Chem. 49, 5736-5742.
Arung, E.T., Kusuma, I.W., Christy, E.O., Shimuzu, K., Kondo, R., 2011. Evaluation of medicinal plants from central Kalimantam for antimelanogenesis. J. Nat. Med. 63(4), 473-480.
Arung, E.T., Shimizu, K., Kondo, R., 2006. Inhibitory effect of artocarpan one from Artocarpus heterophyllus on melanin bio synthesis. Biol. Pharm. Bull. 29, 1966-1969.
Ashrafudoulla, M., Bellah, S.F., Alam, F., Faisal, S.S., Kaif, M.A.H., Fuad, F., 2016. Phytochemical screening of Solanum nigrum L, S. myriacanthus Dunal, Solanum melongena and Averrhoa bilimbi in Bangladesh. J. Med. Plant. Stud. 4(1), 35-38.
Askin, C.T., Aslanturk, O.S., 2007. Cytotoxic and genotoxic effects of Lavandula stoechas aqueous extracts. Biologia 62, 292-296.
Babu, C.R., Hepper, F.N., 1979. Taxonomy and nomenclature of Solanum khasianum and some of its relatives. Kew. Bullet. 34(2), 407-411.
Barbosa-Filho, J.M., Piuvezam, M.R., Moura, M.D., Silva, M.S., Lima, K.V.B., Cunha, L.D., Fechine, I.M., Takemura, O.S., 2006. Anti-inflammatory activity of alkaloids: a twenty century review. Rev. Bras. Farmacogn. 16(1), 109-139.
Benamar, H., Tomassini, L., Venditti, A., Marouf, A., Bennaceur, M., Nicoletti, M., 2016a. Pyrrolizidine alkaloids from Solenanthus lanatus DC. with acetylcholinesterase inhibitory activity. Nat. Prod. Res. 30(22), 2567-2574.
Benamar, H., Tomassini, L., Venditti, A., Marouf, A., Bennaceur, M., Serafini, M., Nicoletti, M., 2016b. Acetylcholinesterase inhibitory activity of pyrrolizidine alkaloids from Echium confusum Coincy. Nat. Prod. Res. 31(11), 1277-1285.
Bhavya, M.L., Chandu, A.G.S., Devi, S.S., 2018. Ocimum tenuiflorum oil, a potential insecticide against rice weevil with anti- acetylcholinesterase activity. Ind. Crops Prod. 126, 434-439.
Blois, M.S., 1958. Antioxidant determination by the use of a stable free radical. Nature 181, 1199-2000.
Chang, T.S., 2009. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10, 2440-2475.
Chetri, H.P., Yogol, N.S., Sherchan, J., Anupa, K.C., Mansoor, S., Thappa, P., 2008. Phytochemical and antimicrobial evaluations of some medicinal plants of Nepal Kathmandu University. K.U.S.E.T. 1, 49-54.
Chiari, M.E., Vera, D.M., Palacios, S.M., Carpinella, M.C., 2011. Tyrosinase inhibitory activity of a 6-isoprenoid substituted flavanone isolated from Dalea elegans. Bioorg. Med. Chem. 19(11), 3474-3482.
Criagg, G.M., David, J.N., 2001. Natural product drug discovery in the next millennium. Pharm. Biol. 39, 8-17.
Dank, M.L., Fletcher, Rice, E.L., 1975. Effects of phenolic inhibitors on growth and metabolism of glucose-UL-C14 in Paul’s scarletrose cell suspension cultures. Am. J. Bot. 62, 311-317.
Del-Rio, A., Obdululio, B.G., Casfillo, J., Main, F.G., Ortuno, A., 1997. Uses and properties of citrus flavonoids. J. Agric. Food Chem. 45, 4505-4515.
Demos, I.K., Woolwine, M., Wilson, R.H., McMillan, C., 1975. The effects often phenolic compounds on hypocotyls growth and mitochondrial metabolism of mung bean. Am. J. Bot. 62, 97-102.
Devi, K.R., Subramani, V., Nakulan, V.R., Annamalai, P., 2014. Qualitative and quantitative phytochemical analysis in four pteridophytes. Int. J. Pharm. Sci. Res. 27, 408-412.
Duraipandiyan, V., Ayyanar, M., Ignacimuthu, S., 2006. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complement. Altern. Med. 6, 35-41.
Einhelling, F.A., Ramussen, J.A., 1979. Effects of three phenolic acids on chlorophyll content and growth of soybean and grains orghum seedlings. J. Chem. Ecol. 5, 815-824.
Ellman, G.L., Courtney, K.D., Andrcs, V.Jr., Fmkrstone, R.M., 1960. Eiochem. Pharmacol. 7, 88-95.
Fidrianny, I., Rizkiya, A., Ruslan, K., 2015. Antioxidant activities of various fruit extracts from three solanum sp. using DPPH and ABTS method correlation with phenolic, flavonoid and carotenoid content. J. Chem. Pharm. Res. 7(5), 666-672.
Folin, O., Ciocalteu, V., 1927. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 27, 627-650.
Glass, A.D.M., Dunlap, J., 1974. Influence of phenolic acids of ion uptake. IV. Depolarization of membrane potentials. Plant Physiol. 54, 855-858.
Gogoi, R., Loying, R., Sarma, N., Munda, S., Pandey, S.K., Lal, M., 2018. A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers from North-east India. Ind. Crops Prod. 125, 131-139.
Gogoi, R., Loying, R., Sarma, N., Twahira, B., Pandey, S.K., Lal, M., 2020. Comparative in-vitro biological activities of methyleugenol rich Cymbopogon khasianus Hack., leaf essential oil with pure methyleugenol compound. Current Pharam. Biotech. 21(10), 927-938.
Gupta, A., Gupta, S., 1997. A survey of plants for presence of cholinesterase activity. Phytochemistry 46(5), 827-831.
Herouart, D., Sangwan, R.S., Fliniaux, M.A., Sangwan-Norreel, B.S., 1988. Variations in the leaf alkaloid content of androgenic diploid plants of Datura innoxia. Planta Med. 54, 14-17.
Horsley, S.B., 1976. Allelopathic Interference Among Plants. II. Physiological Modes of Action. In proceedings of the North American Forest Biology Workshop. Syracuse, New York, pp 93-136.
http://www.ikisan.com/medicinal-plants-solanum.html. (Accessed on 29/03/2021).
Ivanova, D., Gerova, D., Chervenkova, T., Yankova, T., 2005. Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J. Ethnopharmacol. 96, 145-150.
Jarald, E.E., Edwin, S., Saini, V., Deb, L., Gupta, V.B., Wate, S.P., Busari, K.P., 2008. Anti-inflammatory and anthelmintic activities of Solanum khasianum Clarke. Nat. Prod. Res. 22, 269-274.
Jennifer, C., Stephie, C.M., Abhishri, S.B., Shalini, B.U., 2012. A review of skin whitening property of plant extracts. Int. J. Pharm. Bio. 3(4), 332-347.
Just, M.J., Recio, M.C., Giner, R.M., Cueller, M.U., Manez, S., Billia, A.R., Rios, J.L., 1998. Anti inflammatory activity of unusual lupine saponins from Bupleurum fruticescens. Planta Med. 64, 404-407.
Kandimalla, R., Kalita, S., Choudhury, B., Kotoky, J., 2015. A review on anti-diabetic potential of genus Solanum (Solanaceae). J. Drug Deliver. Therapeut. 5(1), 24-27.
Kim, Y.J., Uyama, H., 2005. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell Mol. Life Sci. 62, 1707-1723.
Koeppe, D.E., 1972. Some reactions of isolated corn mitochondria influenced by juglone. Physiol. Plant. 27, 89-94.
Kramer, J., Schaich-Walch, G., Nusse, M., 1990. DNA synthesis in radiation-induced micronuclei studied by bromodeoxyuridine (BrdUrd) labeling and anti-BrdUrd antibodies. Mutagenesis 5, 491-495.
Krishnaiah, D., Sarbatly, R., Bono, A., 2007. Phytochemical antioxidants for health and medicine: A move towards nature. Biotech. Mol. Biol. 1, 97-104.
Kumar, R.S., Venkateshwar, C., Samuel, G., Rao, S.G., 2013. Phytochemical screening of some compounds from plant leaf extracts of Holoptelea integrifolia (Planch.) and Celestruse marginata (Grah.) used by gondu tribes at Adilabad district, Andhra Pradesh, India. Int. J. Eng. 2, 65-70.
Kuniyoshi, S., Seiji, Y., Ryuichiro, K., 2003. A new stilbene with tyrosinase inhibitory activity from Chlorophora excelsa. Chem. Pharm. Bull. 51, 318-319.
Lee, S.H., Choi, S.Y., Kim, H., Hwang, J.S., Lee, B.G., Gao, J.J., Kim, S.Y., 2002. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol. Pharm. Bull. 25, 1045-1048.
Lu, Y.H., Chen, J., Wei, D.Z., Wang, Z.T., Tao, X.Y., 2009. Tyrosinase inhibitory effect and inhibitory mechanism of tiliroside from raspberry. J. Enzyme Inhib. Med. Chem. 24(5), 1154-1160.
Mahato, S.B., Sahu, N.P., Ganguly, A.N., Kasai, R., Tanaka, O., 1980. Steroidal alkaloids from Solanum khasianum: Application of13 CNMR spectroscopy to their structural elucidation. Phytochemistry 19, 2017-2020.
Mahato, S.B., Sen, S., 1997. Advances in triterpenoid research, 1990-1994. Phytochemistry 44, 1185-1236.
Maiti, P.C., Mookerjea, S., Mathew, R., 1965. Solasodine from Solanum khasianum. US Department of Agriculture. 54, 1828-1829.
Mann, J.D., 1978. Production of solasodine for the pharmaceutical industry. Adv. Agron. 30, 209-215.
Martinez, V.I., Periago, M.J., Ros, G., 2000. Nutritional importance of phenolic compounds in the diet. Am. J. Med. Sci. 50, 5-18.
Mukherjee, P.K., Kumar, V., Houghton, P.J., 2007. Screening of Indian medicinal plants for acetylcholinesterase inhibitory activity. Phytother. Res. 21, 1142-1145.
Nostro, A., Germano, M.P., Dangelo, V., Marino, A., Cannatelli, M.A., 2000. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett. Appl. Microbiol. 30, 379-384.
Nyarko, A.A., Addy, M.E., 1990. Effects of aqueous extract of Adeniacis sampeloides on blood pressure and serum analaytes of hypertensive patients. Phytother. Res. 4, 25-28.
Ogi, T., Higa, M., Maruyama, S., 2011. Melanin synthesis inhibitors from Balanophora fungosa. J. Agric. Food Chem. 59(4), 1109-1114.
Okwu, D.E., 2004. Phytochemicals and vitamin content of indigenous species of south eastern Nigeria. J. Sustain. Agric. Environ. 6, 30-37.
Oyaizu, M., 1986. Studies on products of browning reaction. J. Hum. Nutr. Diet. 44, 307-315.
Pan, M.H., Lai, C.S., Ho, C.T., 2010. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 1, 15-31.
Parvez, S., Kang, M., Chung, H.S., Bae, H., 2007. Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res. 21, 805-816.
Paudel, V.R., Gupta, V.N.P., 2008. Effect of some essential oils on seed germination and seedling length of Parthenium hysterophorous L. Ecoprint 15, 69-73.
Prakash, V., Mishra, P.K., Mishra, M., 2009. Screening of medicinal plant extracts for antioxidant activity. J. Med. Plants Res. 3, 608-612.
Piana, M., Camponogara, C., Boligon, A.A., Machado, M.M., Brum, T.F., Oliveira, S.M., Bauermann, L.F., 2016. Topical anti-inflammatory activity of Solanum corymbiflorum leaves. J. Ethnopharmacol. 179, 16-21.
Raquel, F.E., 2007. Bacterial lipid composition and antimicrobial efficacy of cationic steroid compounds. Biochim. Biophys. 1768, 2500-2509.
Rasouli, H., Yarani, R., Pociot, F., Djordjevic, J.P., 2020. Anti-diabetic potential of plant alkaloids: Revisiting current findings and future prospectives. Pharmaco. Res. 155, 104723.
Ravi, V., Saleem, T.S.M., Patel, S.S., Raamamurthy, J., Gauthaman, K., 2009. Anti-inflammatory effect of methanolic extract of Solanum nigrum Linn berries. I.JA.R.N.P. 2, 33-36.
Rice, E.L., 1979. Allelopathy-an update. Bot. Rev. 45, 15-109.
Rice-Evans, C., Miller, N., Paganga, G., 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152-159.
Ryu,Y.B., Ha, T.J., Curtis-Long, M.J., Ryu, H.W., Gal, S.W., Park, K.H., 2008. Inhibitory effects on mushroom tyrosinase by flavones from the stembarks of Morus lhou (S.) Koidz. J. EnzymeInhib. Med. Chem. 23, 922-930.
Sabu, M.C., Kuttan, R., 2002. Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J. Ethnopharmacol. 81, 155-160.
Salah, N., Miller, N.J., Pagange, G., Tijburg, L., Bolwell, G.P., Rice, E., Evans, C., 1995. Polyphenolic flavonoids as scavenger of aqueous phase radicals as chai breaking antioxidant. Arch. Biochem. Biophys. 2, 339-346.
Salemme, A., Togna, A.R., Mastrofancecsco, A., Cammisotto, V., Ottaviani, M., Bianco, A., Vendtitti, A., 2016. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells. Brain Res. Bullet. 120, 151-158.
Sangita, C., Chatterjee, P., Dey, P., Bhattaccharya, S., 2012. Evaluation of in-vitro anti-inflammatory 530 activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed. 2, 178-180.
Sarikurkcu, C., Kirkan, B., Ozer, M.S., Ceylan, O., Atilgan, N., Cengiz, M., Tepe, B., 2018. Chemical characterization and biological activity of Onsoma gigantean extracts. Ind. Crops Prod. 115, 323-329.
Schmid, S.G.W., 2006. Analysis of inflammation. Ann. Rev. Biomed. Eng. 8, 93-151.
Sofowara, A., 1993. Medicinal Plants and Traditional Medicine in Africa. Spectrum Books Ltd, Ibadan, Nigeria. p. 289.
Sultana, B., Anwar, F., Ashraf, M., 2009. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14, 2167-2180.
Sundari, G.S., Rekha, S., Parvathi, A., 2013. Phytochemical evaluation of three species of Solanum L. Int. J. Res. Ayurveda Pharm. 4(3), 420-425.
Tworkoski, T., 2002. Herbicide effects of essential oils. Weed Sci. 50, 425-431.
Van, S.C.F., Cottenie, J., DeGreef, J., Kint, J.,1971. Biochemical studies in relation to the possible germination regulatory role of naturally occurring coumarin and phenolics. Rec. Adv. Phytochem. 4, 165-221.
Venditti, A., Mandrone, M., Serrilli, A.M., Bianco, A., Iannello, C., Poli, F., Antognoni, F., 2013. Dihydro asparagusic acid: antioxidant and tyrosinase inhibitory activities and improved synthesis. J. Agric. Food Chem. 61(28), 6848-6855.
Venditti, A., Bianco, A., 2020. Sulfur-containing secondary metabolites as neuroprotective agents. Curr. Med. Chem. 27(26), 4421-4436.
Xiao, Z., Storms, R., Tsang, A., 2006. A quantitaive starch-iodine method for measuring alpha-amylse and glucoamylase activities. Anal. Biochem. 351(1), 146-148.
Yihai, W., Limin, X., Xiaomin, Y., Xiangjiu, H., 2017. Potential anti-inflammatory steroidal saponins from the berries of Solanum nigrum L. (European Black Night shade). J. Agric. Food Chem. 65(21), 4262-4272.
Zheng, Z.P., Cheng, K.W., To, J.T., Li, H., Wang, M., 2008. Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as anti browning agent. Mol. Nutr. Food Res. 52, 1530-1538.