Discerning the regulated wound healing potential of Ocimum americanum by probing the rosmarinic acid content-a paradigm on zebrafish caudal fin regeneration
Subject Areas : Medicinal and Herbal PlantsArockiya Anita Margret 1 , Ramasamy Maheswari 2 , Arokiaraj Sherlin Rosita 3 , Edward Jesucastin 4
1 - Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli -620017, Tamil Nadu, India
2 - Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli -620017, Tamil Nadu, India
3 - Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli -620017, Tamil Nadu, India
4 - Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli -620017, Tamil Nadu, India
Keywords: <i>Ocimum americanum</i>, Zebrafish, Rosmarinic acid, Caudal regeneration, Wound healing, Matrix metalloproteinases,
Abstract :
Acute traumatic wounds create a serious impact on pathology and impede recovery management. This work emphasis on the wound healing potential of Ocimum americanum extract by caudal regeneration studies in zebrafish model. Molecular docking studies exhibited high binding energy (-8.8 kcal/mol) and an inhibitory effect was conferred between the plant’s standard compound rosmarinic acid against gelatinase. To evaluate its efficacy the plant extract is queried for the presence of phenolic components analogous to rosmarinic acid. The FTIR studies showed similar functional groups with the incidence of phenolic contents and the HPLC assay validated its presence by depicting a communal peak at 4.19 min. In vivo studies authenticated the LC50 value at an optimum concentration of 135.51 ± 0.01 mg/L. The caudal fins were excised to assay regeneration capacity and histopathology sections augmented restoration. Together these results conclude the wound healing capability O. americanam with the probability to regenerate caudal fins and reparation.
Bambino, K., Chu, J., 2017. Zebrafish in Toxicology and Environmental Health. Zebrafish at the Interface of Development and Disease Research [Internet]. Elsevier, pp. 331-67.
Baron, J.M., Glatz, M., Proksch, E., 2020. Optimal support of wound healing: New insights. Dermatology 236(6), 593-600.
Caley, M.P., Martins, V.L., O'Toole, E.A., 2015. Metalloproteinases and wound healing. Adv. Wound Care 4(4), 225-234.
Chambliss, L.R., 2001. Alternative and complementary medicine: An overview. Clin. Obstet. Gynecol. 44(4), 640-652.
Coates, J., 2006. Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry. doi: org/10.1002/9780470027318.a5606.
Cosconati, S., Forli, S., Perryman, A.L., Harris, R., Goodsell, D.S., Olson, A.J., 2010. Virtual screening with autodock: Theory and practice. Expert. Opin. Drug. Discov. 5(6), 597-607.
Elmastaş, M., Muhammed Celik, S., Genc, N., Aksit, H., Erenler, R., Gulcin, I., 2018. Antioxidant activity of an anatolian herbal tea—Origanum minutiflorum: isolation and characterization of its secondary metabolites. Int. J. Food Prop. 21(1), 374-384.
Erenler, R., Demirtas, I., Karan, T., Gul, F., Kayir, O., Karakoc, O., 2018. Chemical constituents, quantitative analysis and insecticidal activities of plant extract and essential oil from Origanum onites L. Trends Phytochem. Res. 2(2), 91-96.
Erenler, R., Sen, O., Aksit, H., Demirtas, I., Yaglioglu, A.S., Elmastas, M., Telci, I., 2016. Isolation and identification of chemical constituents from Origanum majorana and investigation of antiproliferative and antioxidant activities. J. Sci. Food Agric. 96(3), 822-836.
Gamaro, G.D., Suyenaga, E., Borsoi, M., Lermen, J., Pereira, P., Ardenghi, P., 2011. Effect of rosmarinic and caffeic acids on inflammatory and nociception process in rats. ISRN Pharmacol. 451682, doi: org/10.5402/2011/451682.
Genç, N.E., Elmastaş, M., Telci, I., Erenler, R. 2020. Quantitative analysis of phenolic compounds of commercial basil cultivars (Ocimum basilicum L.) by LC-TOF-MS and their antioxidant effects. Int. J. Chem. Technol. 4, 179-184.
Gorski, J., Proksch, E., Baron, J.M., Schmid, D., Zhang, L., 2020. Dexpanthenol in wound healing after medical and cosmetic interventions (post procedure wound healing). Pharmaceuticals (Basel) 13(7), 138.
Jarbrink, K., Ni, G., Sonnergren, H., Schmidtchen, A., Pang, C., Bajpai, R., Car, J., 2016. Prevalence and incidence of chronic wounds and related complications: A protocol for a systematic review. Syst. Rev. 5(1), 152. doi:10.1186/s13643-016-0329-y.
Korkina, L.G., Mikhal'chik, E., Suprun, M.V., Pastore, S., Dal Toso, R., 2007. Molecular mechanisms underlying wound healing and anti-inflammatory properties of naturally occurring biotechnologically produced phenylpropanoid glycosides. Cell Mol. Biol. (Noisy-le-grand). 53(5), 84-91.
Koysu, P., Genc, N., Elmastas, M., Aksit, H., Erenler, R., 2019. Isolation, identification of secondary metabolites from Salvia absconditiflora and evaluation of their antioxidative properties. Nat. Prod. Res. 33(24), 3592-3595.
Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney P.J., 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46(1-3), 3-26.
Mohammadhosseini, M., Frezza, C., Venditti, A., Mahdavi, B., 2021a. An overview of the genus Aloysia Palau (Verbenaceae): Essential oil composition, ethnobotany and biological activities. Nat. Prod. Res., doi: org/10.1080/14786419.2021.1907576.
Mohammadhosseini, M., Frezza, C., Venditti, A., Sarker, S., 2021b. A systematic review on phytochemistry, ethnobotany and biological activities of the genus Bunium L. Chem. Biodivers. 18(11), e2100317.
Moldovan, L., Craciunescu, O., Toma, L., Gaspar, A., Constantin, D., 2011. Antioxidant potential of Arnica montana and Urtica dioica hydroalcoholic extracts on mouse fibroblasts in vitro. Planta Med. 77(12), doi: org/10.1055/s-0031-1282429.
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785-2791.
Nahar, L., El-Seedi, H.R., Khalifa, S.A.M., Mohammadhosseini, M., Sarker, S.D., 2021. Ruta essential oils: Composition and bioactivities. Molecules 26(16), 4766.
Neely, A.N., Clendening, C.E., Gardner, J., Greenhalgh, D.G., 2000. Gelatinase activities in wounds of healing-impaired mice versus wounds of non-healing-impaired mice. J. Burn Care Rehabil. 21(5), 395-402.
Okur, N., Hökenek, N., Okur, M.E., Ayla, Ş., Yoltaş, A., Siafaka, P.I., Cevher, E., 2019. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm. J. 27(5), 738-752.
Olaoluwa, O., Taiwo, O., Nahar, L., Sarker, S., 2022. Ethnopharmacology, phytochemistry and biological activities of selected African species of the genus Ficus. Trends Phytochem. Res. 6(1), 46-69.
Ozarowski, M., Mikolajczak, P. L., Piasecka, A., Kachlicki, P., Kujawski, R., Bogacz, A., Bartkowiak-Wieczorek, J., Szulc, M., Kaminska, E., Kujawska, M., Jodynis-Liebert, J., Gryszczynska, A., Opala, B., Lowicki, Z., Seremak-Poss, K.D., Keating, M.T., Nechiporuk, A., 2003. Tales of regeneration in zebrafish. Dev. Dyn. 226(2), 202-210.
Powers, J.G., Higham, C., Broussard, K., Phillips, T.J., 2016. Wound healing and treating wounds: chronic wound care and management. J. Am. Acad. Dermatol. 74(4), 607-625.
PubChem, (n.d.). https://pubchem.ncbi.nlm.nih.gov/ (accessed April 27, 2021). [Google Scholar]PDB., https://www.rcsb.org/ (accessed April 27, 2021).
Rady, M.R., Nazif, N.M., 2005. Rosmarinic acid content and RAPD analysis of in vitro regenerated basil (Ocimum americanum) plants. Fitoterapia 76(6), 525-533.
Richardson, R., Metzger, M., Knyphausen, P., Ramezani, T., Slanchev, K., Kraus, C., Schmelzer, E., Hammerschmidt, M., 2016. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development 143(12) ,2077-2088.
Sousa, S., Afonso, N., Bensimon-Brito, A., Fonseca, M., Simões, M., Leon, J., Jacinto, A. 2011. Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development 138(18), 3897-3905. doi: org/10.1242/dev.06471.
Stehfest, K., Boese, M., Kerns, G., Piry, A., Wilhelm, C., 2004. Fourier transform infrared spectroscopy as a new tool to determine rosmarinic acid in situ. J. Plant Physiol. 161(2),151-156.
Sutili, F.J., Murari, A.L., Silva, L.L., Gressler, L.T., Heinzmann, B.M., de Vargas, A.C., Schmidt, D., Baldisserotto, B., 2016. The use of Ocimum americanum essential oil against the pathogens Aeromonas hydrophila and Gyrodactylus sp. in silver catfish (Rhamdia quelen). Lett. Appl. Microbiol. 63(2), 82-88.
Tewari, G., Pande, C., Singh, C., 2013. Variation in essential oil composition of Ocimum americanum L. from north-western Himalayan region. J. Essent. Oil Res. 25(4), 278-290.
Wani, T.U., Raza, S.N., Khan, N.A., 2019. Rosmarinic acid loaded chitosan nanoparticles for wound healing in rats. IJPSR 10, 1138-1147.
Yao, Z., Niu, J., Cheng, B., 2020. Prevalence of chronic skin wounds and their risk factors in an inpatient hospital setting in Northern China. Adv. Skin Wound Care 33(9), 1-10. doi: org/10.1097/01.asw.0000694164.34068.82
Yilanci, S., Bali, Y.Y., Yuzbasioglu, M., Unlu, R.E., Orhan, E., Simon, A., Tóth, G., Demirezer, L.O., Kuruuzum, U.A., 2015. The evaluation of wound healing potential of rosmarinic acid isolated from Arnebia purpure. Planta Med. 81(16), PM_135. doi: org/10.1055/s-0035-1565512.
Zhou, J., Ouedraogo, M., Qu, F., Duez, P. 2013. Potential genotoxicity of traditional Chinese medicinal plants and phytochemicals: an overview. Phytother. Res. 27(12), 1745-1755.