Physicochemical studies of Siberian pine (Pinus sibirica) derived chewing gum
Subject Areas : Phytochemistry: Isolation, Purification, CharacterizationPaula Carrión-Prieto 1 , Jesús Martín-Gil 2 , Ignacio A. Fernández-Coppel 3 , Norlan M. Ruíz-Potosme 4 , Pablo Martin-Ramos 5 *
1 - Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
2 - Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
3 - Engineering of Manufacturing Processes group, School of Industrial Engineering, University of Valladolid, C/ Francisco Mendizábal 1, 47014 Valladolid, Spain
4 - Universidad Europea Miguel de Cervantes. C/ Padre Julio Chevalier 2, 47012 Valladolid, Spain
5 - Department of Agricultural and Environmental Sciences, EPS, Instituto de Investigación en Ciencias Ambientales (IUCA), University of Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain
Keywords: DSC, <i>Pinus sibirica</i>, ATR-FTIR, TG/DTG, Siberian chewing gum, DTA,
Abstract :
In this work, ‘Siberian chewing gum’, a natural product derived from Pinus sibirica’s resin to which healing effects on mouth, stomach and duodenum chronic ulcers are attributed, has been characterized by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and thermal analysis techniques. With regard to the vibrational spectrum, the band at 1693 cm-1, ascribed to ν(CO) terpenic oxo groups, suggests the presence of diterpenes, while the existence of hydroxystilbenes and their glycosides is consistent with the absorption bands in the 3380-3080 cm-1, 1800-1300 cm-1 and 1000-450 cm-1 regions. On the other hand, the thermal behavior of the Siberian chewing gum, elucidated by thermogravimetry (TG), derivative thermogravimetric (DTG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC) techniques, resembles that of arabinogalactan, albeit with a more delayed decomposition.
BBC News, 2007. Student dig unearths ancient gum. BBC. http://news.bbc.co.uk/2/hi/uk/6954562.stm. Accessed on December 30 2017.
Bothara, S.B., Singh, S., 2012. Thermal studies on natural polysaccharide. Asian Pac. J. Trop. Biomed. 2(2), S1031-S1035.
Camilo, C.J., Alves Nonato, C.d.F., Galvão-Rodrigues, F.F., Costa, W.D., Clemente, G.G., Sobreira Macedo, M.A.C., Galvão Rodrigues, F.F., da Costa, J.G.M., 2017. Acaricidal activity of essential oils: a review. Trends Phytochem. Res. 1(4), 183-198.
Daoub, R.M.A., Elmubarak, A.H., Misran, M., Hassan, E.A., Osman, M.E., 2016. Characterization and functional properties of some natural Acacia gums. J. Saudi Soc. Agric. Sci., In press.
Derrick, M., 1989. Fourier transform infrared spectral analysis of natural resins used in furniture finishes. JAIC 28(1), 43-56.
Farjon, A., 2010a. Conifer Database (June 2008), in: Bisby, F., Roskov, Y., Orrell, T., Nicolson, D., Paglinawan, L., Bailly, N., Kirk, P., Bourgoin, T., Baillargeon, G., Ouvrard, D. (Eds.), Species 2000 & ITIS Catalogue of Life: 2010. Annual Checklist. Species 2000, Reading, UK.
Farjon, A., 2010b. A Handbook of the World's Conifers. Brill, Leiden, Boston.
Farjon, A., 2013. Pinus sibirica. The IUCN Red List of Threatened Species 2013: e.T42415A2978539. International Union for Conservation of Nature and Natural Resources.
Foreman, J., Lundgren, C., Gill, P., Measurement of the Physical Properties of Engineering Thermoplastics Using Thermal Analysis. In: Technical papers of the Annual Technical Conference, Detroit, MI, 1993, Society of Plastics Engineers Incorporated, pp. 3025-3025.
Gerling, N.V., Punegov, V.V., Gruzdev, I.V., 2015. Component composition of essential oils and ultrastructure of secretory cells of resin channel needles Juniperus communis (Cupressaceae) [tr.]. Sib. J. For. Sci. 2(6), 62-69.
Grishko, V., Demenkova, L., Raldugin, V., 1994. Chemical composition of the bark of Pinus sibirica. Chem. Nat. Compd. 30(2), 266-266.
Groenewoud, W.M., 2001. Characterisation of Polymers by Thermal Analysis, 1st Ed. Elsevier, Amsterdam; New York.
Huck, C.W., 2015. Advances of infrared spectroscopy in natural product research. Phytochem. Lett. 11, 384-393.
Mohammadhosseini, M., 2017a. Essential oils extracted using microwave-assisted hydrodistillation from aerial parts of eleven Artemisia species: Chemical compositions and diversities in different geographical regions of Iran. Rec. Nat. Prod. 11(2), 114-129.
Mohammadhosseini, M., 2017b. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Ind. Crops Prod. 105, 164-192.
Mohammadhosseini, M., Akbarzadeh, A., Flamini, G., 2017a. Profiling of compositions of essential oils and volatiles of Salvia limbata using traditional and advanced techniques and evaluation for biological activities of their extracts. Chem. Biodivers. 14(5), doi:10.1002/cbdv.201600361.
Mohammadhosseini, M., Sarker, S.D., Akbarzadeh, A., 2017b. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 199, 257-315.
Nunes, H., Miguel, M.G., 2017. Rosa damascena essential oils: a brief review about chemical composition and biological properties. Trends Phytochem. Res. 1(3), 111-128.
Otto, A., Wilde, V., 2001. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers - a review. Bot. Rev. 67(2), 141-238.
Raldugin, V., Hang, V., Dubovenko, Z.V., Pentegova, V., 1976. Terpenoids of the oleoresin of Pinus pumila. Chem. Nat. Compd. 12(3), 266-269.
Raldugin, V., Pentegova, V., 1971. 4-Epiisocembrol, a new terpenoid from the oleoresin of P. koraiensis and P. sibirica. Khim. Prirod. Soedimenii (7)5, 651.
Rogachev, A.D., Salakhutdinov, N.F., 2015. Chemical composition of Pinus sibirica (Pinaceae). Chem. Biodivers. 12(1), 1-53.
Shatar, S., Adams, R.P., 1996. Analyses of the leaf and resin essential oils of Pinus sibirica (Rupr.) Mayr from Mongolia. J. Essent. Oil Res. 8(5), 549-552.
Shikov, A.N., Pozharitskaya, O.N., Makarov, V.G., Makarova, M.N., 2008. Anti-inflammatory effect of Pinus sibirica oil extract in animal models. J. Nat. Med. 62(4), 436-440.
Singh, S., Bothara, S.B., 2014. Physico-chemical and structural characterization of mucilage isolated from seeds of Diospyros melonoxylon Roxb. Braz. J. Pharm. Sci. 50(4), 713-725.
Teratani, F., Miyazaki, K., 1968. Effect of the thermal treatment on wood hemicelluloses. I. The change of arabinogalactan by heating. Mokuzai Gakkaishi 14(2), 91-97.
Tyukavkina, N.A., Gromova, A.S., Lutskii, V.I., Voronov, V.K., 1972. Hydroxystilbenes from the bark of Pinus sibirica. Chem. Nat. Compd. 8(5), 570-572.
Wang, Q., Ellis, P., Ross-Murphy, S., 2002. Dissolution kinetics of guar gum powders. I. Methods for commercial polydisperse samples. Carbohydr. Polym. 49(2), 131-137.
Wei, J., Guo, W.-H., Cao, C.-Y., Kou, R.-W., Xu, Y.-Z., Górecki, M., Di Bari, L., Pescitelli, G., Gao, J.-M., 2018. Polyoxygenated cyathane diterpenoids from the mushroom Cyathus africanus, and their neurotrophic and anti-neuroinflammatory activities. Sci. Rep. 8(1).
Zhou, X.-L., Sun, P.-N., Bucheli, P., Huang, T.-H., Wang, D., 2009. FT-IR methodology for quality control of arabinogalactan protein (AGP) extracted from green tea (Camellia sinensis). J. Agric. Food Chem. 57(12), 5121-5128.