بررسی خصوصیات فیزیکی و شیمیایی و پایداری اکسیداتیو نانوکپسولهای روغن ماهی درشرایط مختلف نگهداری
محورهای موضوعی : میکروبیولوژی مواد غذاییشهلا احمدی 1 , سید مهدی اجاق 2 * , شیرین حسنی 3
1 - دانشجوی کارشناسی ارشد فرآوری محصولات شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 - دانشیار گروه فرآوری محصولات شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 - دکتری فرآوری محصولات شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
کلید واژه: پایداری اکسایشی, خشک کن انجمادی, رطوبت, روغن ماهی ریزپوشانی,
چکیده مقاله :
مقدمه: فواید پزشکی و بهداشتی مصرف اسید های چرب امگا 3 و همچنین حساسیت بالای اسید های چرب غیر اشباع به اکسیداسیون باعث گردید تا استفاده از ریزپوشانی روغن ماهی به منظور غنی سازی فرآورده های غذایی و دارویی رواج بیشتری پیدا کند. مطالعه حاضر با هدف ارزیابی خصوصیات فیزیکی و شیمیایی نانوکپسول های روغن ماهی و همچنین بررسی پایداری اکسایشی آنها طی نگهداری در رطوبت های نسبی صفر و 24 درصد انجام گرفت. مواد و روش ها: امولسیون روغن ماهی با نسبت 4:1 (روغن:پوشش) با ترکیبات دیواره ای شامل مالتودکسترین (M)، نشاسته اصلاح شده (Hi-cap) و کنستانتره آب پنیر (WPC) تهیه و به روش سونیکاسیون، نانوکپسول ها آماده گردیدند. خصوصیات امولسیون و پودر نانوکپسول تولید شده شامل ثبات امولسیون، ویسکوزیته ظاهری، رطوبت پودر، ضریب ریزپوشانی، اندازه ذرات و مورفولوژی نانوکپسول ها مورد ارزیابی قرار گرفت. یافته ها: با توجه به نتایج ، کمترین مقدار درجه خامه ای شدن و ویسکوزیته به ترتیب در نانوکپسول های با پوشش ترکیبی از M+Hi-cap+WPC و مالتودکسترین مشاهده گردید. میزان رطوبت بین تیمارها مشخص نمود که تیمار M+Hi-cap حاوی بیشترین میزان رطوبت بود. کمترین و بیشترین اندازه ذرات به ترتیب در تیمارهای M+Hi-cap+WPC و M مشاهده گردید. همچنین، بهترین راندمان ریزپوشانی در نانوکپسول های با دیواره M+Hi-cap+WPC حاصل شد. تصاویر میکروسکوپ SEM حاکی از ورقه ای بودن پودرهای حاصل از ریزپوشانی با خشک کن انجمادی بودند. نگهداری پودر نانوکپسوله طی 21 روز با رطوبت نسبی صفر و 24% حاکی از افزایش مقادیر پراکسید و پاراآنیزیدین بود؛ میزان پراکسید و پاراآنیزیدین در رطوبت 24% به طور قابل توجهی بیشتر از رطوبت صفر% بوده و بالاترین میزان ثبات اکسایشی در نانوکپسول های با دیواره M+Hi-cap+WPC مشاهده گردید. نتیجهگیری: بر پایه یافته های تحقیق، رطوبت نسبی عامل تاثیرگذار بر روند اکسیداسیون نانوکپسول های حامل روغن ماهی بوده و بکارگیری تکنیک نانوریزپوشانی روشی عملی و مؤثر برای افزایش پایداری روغن ماهی بهمنظور غنیسازی موادغذایی و ارتقای سلامتی انسان می باشد.
Introduction: the health benefits of omega-3 fatty acids, as well as the high sensitivity ofunsaturated fatty acids to oxidation of fish oil, caused the use of encapsulation of fish oil forenriching food products and drugs.Materials and Methods: this study aims to evaluate the physicochemical properties of nanoencapsulatedfish oil, and their oxidative stability during storage at 0 and 24% relativehumidity conditions. Emulsion was prepared after sonication with wall materials ofmaltodextrin (M), modified starch (Hi-cap) and whey protein concentrate (WPC) at the ratioof 1:4 (oil:wall). Emulsion and nano-encapsulated powder properties including emulsionstability, apparent viscosity, powder moisture, encapsulated coefficient, particle size andmorphology of nano-capsules were determined.Results: The lowest amounts of creaming and viscosity were observed in M+Hi-cap+WPCand M, respectively. Moisture content in M+Hi-cap showed the highest value. The lowest andhighest particle sizes were measured in M+Hi-cap+WPC and M, respectively. Also, the bestencapsulation efficiency was obtained for M+Hi-cap+WPC. SEM photographs showed glasslikesheets of encapsulated materials with the freeze-dryer. During 21 days storage at 0 and24% relative humidity, the results showed an increase in peroxide and anisidine values. Thevalues were higher at 24% than the 0% humidity, and the best results of oxidative stabilitywere observed in M+Hi-cap+WPC treatment.Conclusion: Based on the findings, relative humidity is an effective factor in the oxidation offish oil nano-capsules. The use of nano-encapsulation is a practical and effective method forincreasing the stability of fish oil for enriching the food and promoting human health.
بحرانی، س.، قنبر زاده، ب.، همیشه کار، ح. و صوتی
خیابانی، م. (1392). نانوانکپسولاسیون اسیدهای چرب امگا-3 توسط حاملهای پکتین- کازئینات: بررسی تشکیل کمپلکس، اندازه ذرات و کارایی انکپسولاسیون. مجله علوم تغذیه و صنایع غذایی ایران. 8(3)، 1-15.
قرآنی، ب.، کدخدایی، ر. و آلحسینی، ع. (1396). تاٴثیر نوع پلیمر، دما و رطوبت نسبی بر ویژگیهای فیزیکوشیمیایی و پایداری ترکیبات زیست فعال زعفران ریزپوشانیشده. علوم و صنایع غذایی، 64(14)، 127-142.
یوسفی، ف.، عباسی، س. و عزت پناه، ح. (1391). تاثیر میزان صمغ فارسی، روغن، پروتئین و پ هاش بر پایداری امولسیون تهیه شده با فرا صوت. نشریه پژوهش و نوآوری در علوم و صنایع غذایی، 1(3)، 199-218.
AOCS (2007). Official methods and recommended practices of the American oil chemist’s society(6th ed.). Champaign, IL: AOCS Press.
Bae, E. K. & Lee, S. J. (2008). Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, 25(8), 549-560.
Baik, M. Y., Suhendro, E. L., Nawar, W. W., McClements, D. J., Decker, E. A. & Chinachoti, P. (2004). Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. Journal of the American Oil Chemists' Society, 81(4), 355-360.
Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A. & Liang, L. (2016). Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143-182.
Bhandari, B. R. & Howes, T. (1999). Implication of glass transition for the drying and stability of dried foods. Journal of Food Engineering, 40(1), 71-79.
Bhandari, B. R., Patel, K. C. & Chen, X. D. (2008). Spray drying of food materials—Process and product characteristics. Drying technologies in food processing, 4, 113-157.
Binsi, P. K., Nayak, N., Sarkar, P. C., Jeyakumari, A., Ashraf, P. M., Ninan, G. & Ravishankar, C. N. (2017). Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: Characterization and release kinetics. Food Chemistry, 219, 158-168.
Bule, M. V., Singhal, R. S. & Kennedy, J. F. (2010). Microencapsulation of ubiquinone-10 in carbohydrate matrices for improved stability. Carbohydrate Polymers, 82(4), 1290-1296.
Carneiro, H. C., Tonon, R. V., Grosso, C. R. & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443-451.
Desai, K. G. H. & Jin Park, H. (2005). "Recent developments in microencapsulation of food ingredients." Drying Technology 23(7): 1361-1394.
Ezhilarasi, P. N., Karthik, P., Chhanwal, N. & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6(3), 628-647.
Fernandes, L. P., Turatti, I. C., Lopes, N. P., Ferreira, J. C., Candido, R. C. & Oliveira, W. P. (2008). Volatile retention and antifungal properties of spray-dried microparticles of Lippia sidoides essential oil. Drying Technology, 26(12), 1534-1542.
Gallardo, G., Guida, L., Martinez, V., López, M. C., Bernhardt, D., Blasco, R. & Hermida, L. G. (2013). Microencapsulation of linseed oil by spray drying for functional food application. Food Research International, 52(2), 473-482.
Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107-1121.
Ghorbanzade, T., Jafari, S. M., Akhavan, S. & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146-152.
Gotoh, N. & Wada, S. (2006). The importance of peroxide value in assessing food quality and food safety. Journal of the American Oil Chemists' Society, 83(5), 473-474.
Goula, A. M. & Adamopoulos, K. G. (2012). A method for pomegranate seed application in food industries: seed oil encapsulation. Food and Bioproducts Processing, 90(4), 639-652.
Gruenfelder, C. A. (2014). Sensory evaluation of heart-healthy foods enriched with omega-3 fats from fish oil, College of Saint Elizabeth.
Hogan, S. A., O'riordan, E. D. & O'sullivan, M. (2003). Microencapsulation and oxidative stability of spray-dried fish oil emulsions. Journal of Microencapsulation, 20(5), 675-688.
Iranian National Standardization Organization (2013). Saffron - Test methods Iranian National Standardization, No.259-2, 5th.
Jafari, S. M., Assadpoor, E., Bhandari, B. & He, Y. (2008). Nano-particle encapsulation of fish oil by spray drying. Food Research International, 41(2), 172-183.
Jordan, R. G. (2010). Prenatal omega‐3 fatty acids: review and recommendations. Journal of Midwifery & Women’s Health, 55(6), 520-528.
Kahl, J. L., Artz, W. E. & Schanus, E. G. (1988). Effects of relative humidity on lipid autoxidation in a model system. Lipids, 23(4), 275-279.
Komaiko, J., Sastrosubroto, A. & McClements, D. J. (2016). Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids. Food chemistry, 203, pp.331-339.
Kumar, M. N. V. R. (2000). Nano and microparticles as controlled drug delivery devices. Journal of Pharmacy and Pharmaceutical Sciences, 3(2), 234-258.
Lauterbach, R. & Pawlik, D. (2014). Chapter 23-Fish-oil fat emulsion and retinopathy in very low birth weight infants. Handbook of nutrition, diet and the eye. San Diego: Academic Press. p, 233-40.
Maloney, J. F., Labuza, T. P., Wallace, D. H. & Karel, M. (1966). Autoxidation of Methyl Linoleate in Freeze‐Dried Model Systems. I. Effect of Water on the Autocatalyzed Oxidation. Journal of Food Science, 31(6), 878-884.
Nasrin, T. A. A. & Anal, A. K. (2015). Enhanced oxidative stability of fish oil by encapsulating in culled banana resistant starch-soy protein isolate based microcapsules in functional bakery products. Journal of food science and technology, 52(8), 5120-5128.
Nussinovitch, A. (1997). Hydrocolloid applications: gum technology in the food and other industries. (pp. 134-137). London:
Blackie Academic & Professional.
Pereira, H. V. R., Saraiva, K. P., Carvalho, L. M. J., Andrade, L. R., Pedrosa, C. & Pierucci, A. P. T. R. (2009). Legumes seeds protein isolates in the production of ascorbic acid microparticles. Food Research International, 42(1), 115-121.
Phillips, G. O. & Williams, P. A. (Eds.). 2009. Handbook of hydrocolloids. Elsevier.
Ponginebbi, L., Nawar, W. W. & Chinachoti, P. (2000). Effect of relative humidity on lipid oxidation in freeze-dried emulsions. Grasas y Aceites, 51, 348-354.
Porras-Saavedra, J., Palacios-González, E., Lartundo-Rojas, L., Garibay-Febles, V., Yáñez-Fernández, J., Hernandez-Sanchez, H. & Alamilla-Beltran, L. (2015). Microstructural properties and distribution of components in microparticles obtained by spray-drying. Journal of Food Engineering, 152, 105-112.
Rasti, B., Jinap, S., Mozafari, M. R. & Yazid, A. M. (2012). Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chemistry, 135(4), 2761-2770.
Rodríguez, J., Martín, M. J., Ruiz, M. A. & Clares, B. (2016). Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Research International, 83, 41-59.
Shepherd, R., Robertson, A. & Ofman, D. (2000). Dairy glycoconjugate emulsifiers: casein–maltodextrins. Food Hydrocolloids, 14(4), 281-286.
Singh, M., Chakrapani, A. & O’Hagan, D. (2007). Nanoparticles and microparticles as vaccine-delivery systems. Expert review of vaccines, 6(5), 797-808.
Soottitantawat, A., Bigeard, F., Yoshii, H., Furuta, T., Ohkawara, M. & Linko, P. (2005). Influence of emulsion and powder size on the stability of encapsulated D-limonene by spray drying. Innovative Food Science & Emerging Technologies, 6(1), 107-114.
Taherian, A. R., Fustier, P. & Ramaswamy, H. S. (2006). Effect of added oil and modified starch on rheological properties, droplet size distribution, opacity and stability of beverage cloud emulsions. Journal of Food Engineering, 77(3), 687-696.
Tehrany, E., Jacquot, M., Gaiani, C., Imran, M., Desobry, S. & Linder, M. (2012). Beneficial effects and oxidative stability of
omega-3 long-chain polyunsaturated fatty acids. Trends in Food Science & Technology, 25(1), 24-33.
Velasco, J., Dobarganes, C., Holgado, F. & Márquez-Ruiz, G. (2009). A follow-up oxidation study in dried microencapsulated oils under the accelerated conditions of the Rancimat test. Food Research International, 42(1), 56-62.
Walker, R. M., Decker, E. A. & McClements, D. J. (2015). Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: effect of surfactant concentration and particle size. Journal of Food Engineering, 164, pp.10-20.
Wang, Y., Liu, W., Chen, X. D. & Selomulya, C. (2016). Micro-encapsulation and stabilization of DHA containing fish oil in protein-based emulsion through mono-disperse droplet spray dryer. Journal of Food Engineering, 175, 74-84.
Yoshii, H., Soottitantawat, A., Liu, X. D., Atarashi, T., Furuta, T., Aishima, S. & Linko, P. (2001). Flavor release from spray-dried maltodextrin/gum arabic or soy matrices as a function of storage relative humidity. Innovative Food Science & Emerging Technologies, 2(1), 55-61.
Zimet, P. & Livney, Y. D. (2009). Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids, 23(4), 1120-1126.