طراحی سیستمی اتوماتیک جهت درجهبندیکشمش و تعیین درصد دم داربودن آن با استفاده از تکنیکهای پردازش تصویر
محورهای موضوعی :
اصول مهندسی صنایع غذایی-مدل سازی
مسعود خزاعی فدافن
1
,
سید حسین استیری
2
1 - گروه مهندسی برق و کامپیوتر ، دانشکده امام خمینی(ره) سبزوار، واحد خراسان رضوی ، دانشگاه فنی و حرفه ای، تهران، ایران.
2 - گروه علوم و صنایع غذائی، واحد سبزوار، دانشگاه آزاد اسلامی ، سبزوار، ایران.
تاریخ دریافت : 1399/12/18
تاریخ پذیرش : 1400/02/26
تاریخ انتشار : 1402/07/01
کلید واژه:
پردازش تصویر,
استخراج ویژگی,
درجه بندی کشمش,
دم داربودن کشمش,
چکیده مقاله :
چکیده : کشمش یکی از محصولات مهم کشاورزی است که از خشک کردن انگور بدست می آید. در حال حاضر درجه بندی کشمش و تعیین درصد انواع مختلف کشمش در یک نمونه و همچنین تشخیص دم دار بودن و یا نیودن آن به صورت دستی انجام می گیرد وبنابراین مستلزم صرف زمان زیادی می باشد. در این مطالعه ، هدف ارائه الگوریتمهایی مؤثر و توانمند با استفاده از تکنیکهای پردازش تصویر در حوزه بینایی ماشین برای درجه بندی کشمش و همچنین تشخیص و تعیین درصد کشمشهای دم دار و بی دم می باشد. جهت تجزیه و تحلیل الگوریتم ارائه شده ، با تهیه عکس از نمونه های مختلفی از انواع کشمش و اجرای الگوریتمهای پیشنهادی بر روی این نمونه ها در نرم افزار MATLAB و مقایسه نتایج به دست آمده با روشهای دستی ، عملکرد الگوریتم مورد ارزیابی قرار می گیرد. جهت ارزیابی عملکرد روشهای پیشنهادی معیارهای دقت کل ، حساسیت و دقت خروجی مثبت محاسبه گردید که یافته های حاصل شده از ارزیابی روش پیشنهادی جهت درجه بندی کشمش دقت کل 98/65% ، حساسیت 98/47% و دقت خروجی مثبت 97/83% و همچنین یافته های روش پیشنهادی جهت تعیین درصد دم دار بودن کشمش نیز دقت کل 98% ، حساسیت 32/92% و دقت خروجی مثبت 69/98% را نشان داد که بیانگر عملکرد مطلوب و قابل اعتماد این روشها همراه با صرف هزینه کم ( محاسبات نرم افزاری کم ) در مقایسه با روشهای سنتی می باشد.
منابع و مأخذ:
Abbasgolipour, M., Omid, M., Keyhani, A., Mohtasebi, SS. 2010. Sorting raisins by machine vision system. Modern Applied Science, 4(2): 49-56.
Abbasgholipour, M., Omid, M., Keyhani, A., Mohtasebi. SS. 2011. Color image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditions. Expert
Chen, Y-R., Chao, K., Kim, MS. 2002. Machine vision technology for agricultural applications.Computers and electronics in Agriculture, 36(2):73-91.
Gohil, A., Pipalia, D. 2016. Review on small size object detect and count using digital image processing. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 5(5): 1423-1426.
Jazayeriy, H., Nosrati, A., FayyazZadeh, F. 2017. Detecting and Counting Non-Mitotic Cells of Immunohistochemical Stained Breast Tissue. Iranian Quarterly Journal of Breast Disease, 9(4) : 26-36.
Khojastehnazhand, M., Ramezani, H. 2019. Bulk Raisin Classification using Gray Level Co-occurrenc Matrix. Iranian Biochemical Engineering, 50(4): 951-961.
Maheshwari, CV. 2013. Machine Vision Technology for Oryza Sativa L.(RICE). International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(7): 2893-2900.
Omid, M., Sharouzi, M., Keyhani, A. 2010. Development of an Automated Machine for Grading Raisins based on Color and Size. Journal of Modelling and Simulation of System, 1(3): 62-75.
Pawar SP, Sarkar A.2013 . Cost Effective Grading Process for Grape Raisins based on HSI and Fuzzy Logic Algorithms. International Journal of Computer Applications, 67: 22-28.
Prajapati, BB., Patel, S. 2013. Algorithmic approach to quality analysis of Indian Basmati rice using digital image processing. Int J Emerg Technol Adv Eng, 4:503-509.
Sadrnia, H., Rajabipour, A., Jafary, A., Javadi, A., Mostofi, Y. 2007. Classification and analysis of fruit shapes in long type watermelon using image processing. Int J Agric Biol, 70: 61-69.
Saglam, Ö., Velioglu, HM. 2012. Evaluation of Insect Damage on Wheat using Image Processing Technology. International Conference of Agricultural Engineering, 8-12 .
Shantaiya, S., Ansari, U. 2012. Identification of food grains and its quality using pattern
classification. international journal of computer and communication technology, 3(1): 15-19.
Shinde, KG., Patil, B. 2017. Sorting of raisins using computer vision approach. International Research Journal of Engineering and Technology, 4: 643-648.
Siddagangappa, MR., Kulkarni, APA. 2014. Classification and Quality Analysis of Food Grains. IOSR Journals (IOSR Journal of Computer Engineering), 16: 10-15
Symons, S., Van Schepdael, L., Dexter, J. 2003. Measurement of Hard Vitreous Kernels in Durum Wheat by Machine Vision. Cereal Chemistry, 80(5): 504-511.
vinay, k., veerappa, BN. 2017. Raisins Grade Detection Using Image Processing Technology. International Journal of Science and Research, 6(5): 601- 605.
Zayas, I., Pomeranz, Y., Lai, F. 1989. Discrimination of wheat and nonwheat components in grain samples by image analysis. Cereal Chemistry, 66(3): 226-233.
_||_