مطالعه پروفایل اسیدهای چرب در ارقام (Chenopodium quinoa willd)برای بهبود امنیت وکیفیت مواد غذایی
محورهای موضوعی : تغذیه -پروبیوتیک ها - غذاهای فراسودمندزهرا فرج زاده 1 , امیر شاکریان 2 , ابراهیم رحیمی 3 , محمود باقری 4
1 - گروه بهداشت مواد غذایی، دانشکده دامپزشکی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران
2 - مرکز تحقیقات تغذیه و محصولات ارگانیک، واحد شهرکرد،دانشگاه آزاد اسلامی، شهرکرد، ایران
3 - گروه بهداشت مواد غذایی، دانشکده دامپزشکی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران
4 - موسسه تحقیقات اصلاح و تهیه نهال و دانه، کرج، ایران.
کلید واژه: ایران, پروفایل اسیدهای چرب, محتوای روغن, کینوا,
چکیده مقاله :
مطالعه حاضر به منظور ارزیابی پروفایل اسیدهای چرب روغن استخراج شده از واریتههای Sajama، Giza1 و Redcarina بذرکینوا کشت داده شده در ایران، انجام پذیرفت. دانههای کینوا واریتههای Sajama، Giza1 و Redcarina، از موسسه تحقیقات اصلاح و تهیه نهال و دانه درکرج، ایران تهیه شد. به منظور استخراج روغن از دانهها از روش سوکسله استفاده شد. ابتدا فرایند متیل استر نمودن اسیدهای چرب انجام و سپس پروفایل اسیدهای چرب با استفاده از دستگاه کروماتوگرافیگازی ارزیابی شد. نتایج نشان داد که کینوا رقم Sajama بیشترین (98/0 ± 19/10 درصد) و رقم Redcarina (21/0 ± 55/2 درصد) کمترین میزان روغن استخراج شده را داشتند. لینولئیک اسید، فراوانترین اسید چرب شناخته شده در بذر انواع ارقام کینوا بود. فراوانی لینولئیک اسید در بذر کینوا ارقام Giza1، Redcarina و Sajana به ترتیب 37/5 ± 17/60 درصد، 15/5 ± 30/57 درصد و 92/4 ± 27/52 درصد بود. در بذر کینوا ارقام Giza1 و Redcarina اسید های چرب پالمیتولئیک و تریکوسیلیک یافت نشد. در بذرکینوا رقم Sajama اسیدهای چرب دکوزاهگزانوئیک و تریکوسانوئیک یافت نشدند. بیشترین میزان اسیدهای چرب میریستیک، پالمیتیک، هگزادکانوئیک، استئاریک، اولئیک، لینولئیک، گاما لینولنیک، آلفا-لینولنیک، آراشیدیک، ایکوزادنوئیک، بهنیک، اروسیک، سروونیک و تریکوسیلیک بهترتیب در ارقام Redcarina، Redcarina، Sajama، Sajama، Sajama، Giza1، Giza1، Sajama، Redcarina، Sajama، Sajama، Sajama، Giza1 و Redcarina کینوا دیده شد. به نظر میرسد بذرکینوا به دلیل محتوای بالای اسیدهای چرب ضروری میتواند جایگزین مناسبی برای برخی از غلات ، مانند برنج باشد
1.Altuna, J., Silva, M., Alvarez, M., Quinteros, M., Morales, D. and Carrillo, W. 2018. Ecuadorian quinoa (Chenopodium quinoa Willd) fatty acids profile. Asian J Pharm Clin Res, 11: 209-11.
2.Angeli, V., Miguel Silva, P., Crispim Massuela, D., Waleed Khan, M., Hamar, A., Khajehei, F., Graeff-Hönninger, S. and Piatti, C. 2020. Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods, 9: 216.
3.AOAC. Official Method. 2003.05. Crude fat in feeds, cereal grains, and forages. Randall/Soxtec/diethyl ether extraction-submersion method, in: Official Methods of Analysis of AOAC International,19th ed., AOAC International, Gaithersburg, MD, USA.
4.Assadi, T., Bargahi, A., Mohebbi, G. H., Barmak, A., Nabipour, I., Mohajeri Borazjani, S. and Kholdebarin, B. 2013. Determination of oil and fatty acids concentration in seeds of coastal halophytic Sueada aegyptica plant. ISM, 16: 9-16.
5.Ballester-Sánchez, J., Millán-Linares, M. C., Fernández-Espinar, M. T. and Haros, C. M. 2019. Development of healthy, nutritious bakery products by incorporation of quinoa. Foods, 8: 379-385
6.Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant'Ana, H. M., Chaves, J. B. P. and Coimbra, J. S. D. R. 2017. Quinoa: Nutritional, functional, and antinutritional aspects. Crit Rev Food Sci Nutr, 57: 1618–1630.
7.González, J. A., Eisa, S., Hussin, S. and Prado, F. E. 2015. Quinoa: an Incan crop to face global changes in agriculture. Quinoa: Improvement and sustainable production, 15: 1-18
8.Graf, B. L., RojasSilva, P., Rojo, L. E., DelatorreHerrera, J., Baldeón, M. E. and Raskin, I. 2015. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14: 431-445.
9.James, L. E. A. 2009. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Advances in Food and Nutrition Research, 58: 1-31
10.Jandacek, R. J. 2017. editor Linoleic acid: a nutritional quandary. Healthcare Multidisciplinary Digital Publishing Institute
11.Kulczyński, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D. and Gramza-Michałowska, A. 2019. The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients, 11: 4-12
12.Liu, K. 2011. Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species. Journal of Food Science, 76: 334-342.
13.Marmouzi, I., El Madani, N., Charrouf, Z., Cherrah, Y. and Faouzi, M. E. A. 2015. Proximate analysis, fatty acids and mineral composition of processed Moroccan Chenopodium quinoa Willd. and antioxidant properties according to the polarity. Phytothérapie, 13: 107-117.
14.Most, M. M., Tulley, R., Morales, S. and Lefevre, M. 2005. Rice bran oil, not fiber, lowers cholesterol in humans. Am J Clin Nutr, 8: 64-81
16.Peiretti, P., Gai, F. and Tassone, S. 2013. Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Animal Feed Science and Technology 183: 56-61
17.Pellegrini, M., Lucas-Gonzales, R., Ricci, A., Fontecha, J., Fernández-López, J., Pérez-Álvarez, J. A. and Viuda-Martos, M. 2018. Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa seeds. Industrial Crops and Products; 11: 38-46.
18.Ruales, J., Nair, B. M. 1993. Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd) seeds. Food Chemistry; 48: 16-31.
19.Saad-Allah, K. M. AND Youssef, M. S. 2018. Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiology and Molecular Biology of Plants; 24: 617-29.
20.Simopoulos, A. P. 2002.The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine &Pharmacotherapy; 56: 365-79
22.Tang, Y., Li, X., Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., Marcone, M. F., Liu, R. and Tsao, R. 2015. Characterisation offatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry; 174: 502-8.
23.Vega, Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L. and Martínez, E. A. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture; 90: 541-547
24.Vilcacundo, R., Hernández-Ledesma, B. 2017. Nutritionaland biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science; 14: 1-6.
25.Wilson, T. A., Ausman, L. M., Lawton, C. W., Hegsted, D. M. and Nicolosi, R. J. 2000. Comparative cholesterol lowering properties of vegetable oils: Beyond fatty acids. J Am Coll Nutr; 19: 601-614
_||_