• فهرست مقالات dynamic cellular manufacturing systems

      • دسترسی آزاد مقاله

        1 - A simulated annealing algorithm to determine a group layout and production plan in a dynamic cellular manufacturing system
        Reza KiA Nikbakhsh Javadian Reza Tavakkoli-Moghaddam
        In this paper, a mixed-integer linearized programming (MINLP) model is presented to design a group layout (GL) of a cellular manufacturing system (CMS) in a dynamic environment with considering production planning (PP) decisions. This model incorporates with an extensiv چکیده کامل
        In this paper, a mixed-integer linearized programming (MINLP) model is presented to design a group layout (GL) of a cellular manufacturing system (CMS) in a dynamic environment with considering production planning (PP) decisions. This model incorporates with an extensive coverage of important manufacturing features used in the design of CMSs. There are also some features that make the presented model different from the previous studies. These include: 1) the variable number of cells, 2) machine depot keeping idle machines, and 3) integration of cell formation (CF), GL and PP decisions in a dynamic environment. The objective is to minimize the total costs (i.e., costs of intra-cell and inter-cell material handling, machine relocation, machine purchase, machine overhead, machine processing, forming cells, outsourcing and inventory holding). Two numerical examples are solved by the GAMS software to illustrate the results obtained by the incorporated features. Since the problem is NP-hard, an efficient simulated annealing (SA) algorithm is developed to solve the presented model. It is then tested using several test problems with different sizes and settings to verify the computational efficiency of the developed algorithm in compare to the GAMS software. The obtained results show that the quality of the solutions obtained by SA is entirely satisfactory in compare to GAMS software based on the objective value and computational time, especially for large-sized problems. پرونده مقاله
      • دسترسی آزاد مقاله

        2 - An archived multi-objective simulated annealing for a dynamic cellular manufacturing system
        Hossein Shirazi Reza Kia Nikbakhsh Javadian Reza Tavakkoli-Moghaddam
        To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelate چکیده کامل
        To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelated decisions involved in the design of a CMS. This paper provides an extensive coverage of important manufacturing features used in the design of CMSs and enhances the flexibility of an existing model in handling the fluctuations of part demands more economically by adding machine depot and PP decisions. Two conflicting objectives to be minimized are the total costs and the imbalance of workload among cells. As the considered objectives in this model are in conflict with each other, an archived multi-objective simulated annealing (AMOSA) algorithm is designed to find Pareto-optimal solutions. Matrix-based solution representation, a heuristic procedure generating an initial and feasible solution and efficient mutation operators are the advantages of the designed AMOSA. To demonstrate the efficiency of the proposed algorithm, the performance of AMOSA is compared with an exact algorithm (i.e., [-constraint method) solved by the GAMS software and a well-known evolutionary algorithm, namely NSGAII for some randomly generated problems based on some comparison metrics. The obtained results show that the designed AMOSA can obtain satisfactory solutions for the multi-objective model. پرونده مقاله
      • دسترسی آزاد مقاله

        3 - A multi-objective model for designing a group layout of a dynamic cellular manufacturing system
        Reza Kia Hossein Shirazi Nikbakhsh Javadian Reza Tavakkoli-Moghaddam
        This paper presents a multi-objective mixed-integer nonlinear programming model to design a group layout of a cellular manufacturing system in a dynamic environment, in which the number of cells to be formed is variable. Cell formation (CF) and group layout (GL) are c چکیده کامل
        This paper presents a multi-objective mixed-integer nonlinear programming model to design a group layout of a cellular manufacturing system in a dynamic environment, in which the number of cells to be formed is variable. Cell formation (CF) and group layout (GL) are concurrently made in a dynamic environment by the integrated model, which incorporates with an extensive coverage of important manufacturing features used in the design of CMSs. Additionally, there are some features that make the presented model different from the previous studies. These features include the following: (1) the variable number of cells, (2) the integrated CF and GL decisions in a dynamic environment by a multi-objective mathematical model, and (3) two conflicting objectives that minimize the total costs (i.e., costs of intra and inter-cell material handling, machine relocation, purchasing new machines, machine overhead, machine processing, and forming cells) and minimize the imbalance of workload among cells. Furthermore, the presented model considers some limitations, such as machine capability, machine capacity, part demands satisfaction, cell size, material flow conservation, and location assignment. Four numerical examples are solved by the GAMS software to illustrate the promising results obtained by the incorporated features. پرونده مقاله