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Abstract 

In this paper, a mixed-integer linearized programming (MINLP) model is presented to design a group layout (GL) of a cellular 
manufacturing system (CMS) in a dynamic environment and considering production planning (PP) decisions. This model incorporates an 
extensive coverage of important manufacturing features used in the design of CMSs. There are also some features that make the presented 
model different from the previous studies. These include: 1) the variable number of cells, 2) machine depot keeping idle machines, and 3) 
integration of cell formation (CF), GL and PP decisions in a dynamic environment. The objective is to minimize the total costs (i.e., costs 
of intra-cell and inter-cell material handling, machine relocation, machine purchase, machine overhead, machine processing, forming cells, 
outsourcing and inventory holding). Two numerical examples are solved by the GAMS software to illustrate the results obtained by the 
incorporated features. Since the problem is NP-hard, an efficient simulated annealing (SA) algorithm is developed to solve the presented 
model. It is then tested using several test problems with different sizes and settings to verify the computational efficiency of the developed 
algorithm in comparison to the GAMS software. The obtained results show that the quality of the solutions obtained by SA is entirely 
satisfactory compared to GAMS software based on the objective value and computational time, especially for large-sized problems. 
Keywords: Dynamic cellular manufacturing systems;Ggroup layout; Production planning; Simulated annealing. 

1. Introduction 

Setup time reduction, work-in-process inventory 
reduction, material handling cost reduction, machine 
utilization improvement, and quality improvement are 
some the benefits of Cellular Manufacturing (CM) 
implementation. The design steps of a cellular 
manufacturing system (CMS) involves 1) cell formation 
(CF) (i.e., grouping parts with similar processing 
requirements into part families and corresponding 
machines into machine cells), 2) group layout (GL) (i.e., 
placing machines within each cell, called intra-cell layout, 
and cells in connection with one another, called inter-cell 
layout), 3) group scheduling (GS) (i.e., scheduling part 
families), and 4) resource allocation (i.e., assigning tools, 
human and material resources) (Wemmerlov and Hyer, 
1986).  

This paper focuses on the first and second stages of 
the CM design (i.e., cell formation and group layout 
problems) under a dynamic environment. In a dynamic 
environment, the product mix and part demands vary 
during a multi-period planning horizon and necessitate 
reconfigurations of cells to form cells efficiently for  

 
 

 
 
 
successive periods. This type of model is called the 
dynamic cellular manufacturing system (DCMS) (Rheault 
et al. 1995). 

For the first time, Rosenblatt (1986) introduced a 
model and developed a dynamic programming approach 
for the dynamic layout problem (DLP), where it is 
assumed that facilities can be easily relocated. The 
optimal location of each facility in each manufacturing 
period is investigated to be obtained by minimizing the 
total costs of material handling and machine relocation 
(Baykasoglu and Gindy, 2001). Drolet et al. (2008) 
developed a stochastic simulation model and indicated 
that DCMSs are generally more efficient than classical 
CMSs or job shop systems, especially with respect to 
performance measures (e.g., throughput time, work-in-
process, tardiness and the total marginal cost for a given 
horizon).   

Since a comprehensive literature review related to 
layout problems and dynamic issues in designing a CMS 
has been done by Kia et al. (2012 and 2013), we only 
mention some recent studies implemented in the area of 
DCMS. Javadi et al. (2013) presented a comprehensive 
model for the cell formation and group layout design. The 
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proposed model incorporated an extensive coverage of 
important operational features and layout design aspects 
to design intra and inter-cell layout and material handling 
flow path structure simultaneously. They examined the 
benefits of incorporated features including routing 
flexibility, operation sequence, variable number of cells, 
un-equal area machines, machines and cells with free 
orientation, and pickup and drop off station for each cell. 
The obtained results illustrated that an integrated 
approach in CMS design can improve the quality of the 
obtained solution. 

Wu et al. (2007) developed a hierarchical genetic 
algorithm (GA) to simultaneously identify manufacturing 
cells and the group layout. Jolai et al. (2011) considered 
CMS formation and layout problems and developed an 
Electromagnetism like (EM-like) algorithm to minimize 
the cost of handling and number of exceptional elements. 

Saidi-Mehrabad and Safaei (2007) presented the 
dynamic cell formation model, in which the number of 
formed cells at each period can be different. Saidi-
Mehrabad and Mirnezami-Ziabari (2011) presented a 
multi-objective mixed integer model to 1) minimize total 
costs of human resource reassignment, the inter-cell 
material handling, machine constant and variable, 
machine relocation and machine purchase, 2) minimize 
cell load imbalances and 3) maximize utilization rate of 
human resource. Particle swarm optimization was 
employed to solve the model. 

Defersha and Chen (2006) proposed a comprehensive 
mathematical model incorporating dynamic cell 
configuration, alternative routings, lot splitting, sequence 
of operations, multiple units of identical machines, 
machine capacity, workload balancing among cells, 
operation cost, subcontracting cost, tool consumption 
cost, setup cost, cell size limits, and machine adjacency 
constraints. Safaei et al. (2008) developed a mixed-integer 
programming model considering the batch inter and intra-
cell material handling by assuming the sequence of 
operations, alternative process plans, and machine 
replication to design the CMS under a dynamic 
environment.   

Ahkioon et al. (2009) presented a mixed-integer 
programming approach for designing a DCMS with 
multi-period Production Planning (PP), cell 
reconfiguration, operation sequence, duplicate machines, 
machine capacity and machine procurement as well as the 
introduction of the routing flexibility. Safaei and 
Tavakkoli-Moghaddam (2009) investigated the effect of 
the trade-off between internal production and outsourcing 
costs on the cell reconfiguration by integrating the multi-
period cell formation and production planning in a DCMS 
in order to minimize the costs of machine, inter/intra-cell 
movement, reconfiguration, subcontracting and inventory 
holding. 

Kamali-Dolat-Abadi (2010) developed a model 
generating the cells and location facilities at the same 
time with ability of moving the machine(s) from one cell 
to another cell and generating the new cells for each 

period in a   dynamic environment. A GA was used for 
solving the problem. Mahdavi et al. (2010) presented an 
integer non-linear mathematical programming model for 
the design of DCMSs with consideration of multi-period 
production planning, dynamic reconfiguration, operation 
time, production volume of parts, machine capacity, 
alternative workers, hiring and firing of workers, and 
worker assignment. 

Rafiee et al. (2011) presented a comprehensive 
mathematical model for integrated cell formation and 
inventory lot sizing problem to minimize the total cost of 
machine procurement, cell reconfiguration, preventive 
and corrective repairs, material handling (intra-cell and 
inter-cell), machine operation, part subcontracting, 
finished and unfinished parts inventory, and defective 
parts replacement. Saxena and Jain (2011) proposed a 
DCMS model considering machine breakdown effect to 
incorporate reliability issue, production planning, and 
design features including process batch size, transfer 
batch size, lot splitting, alternative process routing, 
sequence of operation, machine duplicates, machine 
capacity, work load balancing, machine procurements and 
cell reconfiguration. 

For the first time, group layout design of a DCMS was 
presented by Kia et al. (2012) with a novel mixed-integer 
non-linear programming model. The disadvantage of their 
work was that the number of cells which should be 
formed in each period was predetermined by system 
designer. In an extended study, a multi-objective model 
which could find the optimal number of cells was 
formulated by Kia et al. (2013). The advantage of the 
proposed model in compare to the previous study by Kia 
et al. (2012) was considering the optimal number of cells 
in a multi-objective model with two conflicting objectives 
that minimized the total costs and minimize the imbalance 
of workload among cells. 

The model presented in this study is an extended 
version of the multi-objective model proposed by Kia et 
al. (2013), whose advantages include: (1) multi-rows 
layout of equal-sized facilities, (2) flexible configuration 
of cells, (3) calculating relocation cost based on the 
locations assigned to machines, (4) distance-based 
calculation of intra- and inter-cell material handling costs, 
(5) considering intra-cell movements between two 
machines of a same type, (6) applying the equations of 
material flow conservation, (7) integrating the CF and GL 
decisions in a dynamic environment, and (8) finding the 
optimal number of cells. An obvious drawback in their 
work was that a metaheuristic approach was not designed 
for solving large-sized problems. To overcome this 
disadvantage, a simulated annealing approach is designed 
to solve the problem with a single objective. Also, 
machine depot feature and PP decisions are added to the 
previous model to enhance its flexibility in handling 
changing demand.  

The aims of this study are twofold. The first one is to 
present a new mathematical model with an extensive 
coverage of important manufacturing features consisting 
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of alternate process routings, operation sequence, 
processing time, production volume of parts, purchasing 
machine, duplicate machines, machine capacity, machine 
depot, lot splitting, group layout, multi-rows layout of 
equal area facilities, flexible reconfiguration of cells, 
variable number of cells, outsourcing and inventory 
holding of parts. The second aim is to develop an efficient 
simulated annealing algorithm to solve the presented 
model.  

In this paper, an efficient SA approach is developed 
for solving the presented model, because it belongs to NP-
hard problems. Two numerical examples are solved by the 
GAMS software to illustrate advantages of the presented 
model. Additionally, several numerical examples are 
solved using the extended SA to verify the efficiency of 
the developed algorithm. Furthermore, the efficiency of 
designed SA algorithm in terms of both the objective 
value and computational time is shown by comparing our 
results to those found in examples solved by GAMS 
software.  

The remainder of this paper is organized as follows. In 
Section 2, a mathematical model integrating DCMS, GL 
and PP decisions is presented. We develop the SA 
algorithm in Section 3. Section 4 solves the test problems 
in order to investigate the features of the presented model 
and shows the performance of the developed algorithm. 
Finally, this paper ends with conclusions in Section 5. 

2. Mathematical model and problem descriptions 

2.1. Model assumptions 

In this section, the DCMS model integrating GL and 
PP is formulated under a number of assumptions. Some of 
these assumptions are the same as those considered by 
Kia et al. (2012). However, the new assumptions are 
considered below: 
1. The overhead cost of each machine type implying 

maintenance and other overhead costs such as energy 
cost and general service is known. This cost would be 
considered for each machine in each period only if 
that machine was utilized on the cells to process part-
operations.  

2. It is assumed that in the first period, there is no 
machine available to be utilized. Hence, in the first 
period it would be needed to purchase some machines 
to meet part demands. In the next periods, if the 
present time capacity of machines was not enough to 
satisfy the part demands, some other machines would 
be purchased and added to the current utilized 
machines. 

3. In each period that there is surplus capacity, idle 
machines can be removed from the cells and 
transferred to the machine depot, where the idle 
machines are kept in order to decrease the machine 
overhead costs and provide empty locations in cells to 
accommodate required machines. Whenever it would 

be necessary to increase the processing time capacity 
of the system because of high demand volume, those 
machines could be returned to the cells. 

4. Cell reconfiguration involves different situations 
which are: 1) transferring of the existing machines 
between different locations of a same cell or different 
cells, 2) purchasing and adding new machines to cells, 
and 3) transferring machines between cells and the 
machine depot because of changing capacity 
requirements in successive periods. 

5. The relocation cost of each machine type between two 
periods is known. All machine types can be moved to 
the machine depot or any location in the cells. Even if 
a machine is removed from or returned to the cells, 
this relocation cost is incurred. This cost is paid for 
several situations: 1) to install a new purchased 
machine or a machine returned from the machine 
depot, 2) to uninstall a machine removed from a cell to 
be kept in the machine depot, and 3) to transfer a 
machine between two different locations of a same 
cell or different cells. Transferring machine contains 
uninstallation of a machine from a location and 
installation of that machine in another location. 
Installing and uninstalling costs are considered to be 
same. Actually, if a machine which has been newly 
purchased or returned from the machine depot is 
added to a cell, the only installing cost will be 
imposed. In the same way, if a machine is removed 
from a cell to be kept in the machine depot, the only 
uninstalling cost will be incurred. Then, if a machine 
is transferred between two different locations in the 
cells, both uninstalling and installing costs will be 
imposed. Thus, it would be reasonable to assume that 
the unit cost of adding or removing a machine to/from 
the cells is half of relocation machine cost.  

6. Obviously, the maximum number of machines which 
can be present in a period is equal to the number of 
locations. Therefore, the maximum number of cells 
which can be formed is determined by: 

퐶 =
푡ℎ푒	푛푢푚푏푒푟	표푓	푙표푐푎푡푖표푛푠
푙표푤푒푟	푏표푢푛푑	표푓	푐푒푙푙	푠푖푧푒  

However, the number of cells which should be formed in 
each period is considered as a decision variable in our 
model.  

7. Depending on the fluctuations of demand volumes and 
total costs of meeting those demands, the system can 
produce some surplus parts in a period, hold as an 
inventory between successive periods and used in the 
future planning periods. Also, due to limited machine 
capacities, outsourcing can be used to provide some of 
the required parts to meet the market demand.  
The following notations are used in the model: 
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2.1.1. Sets 

P = {1,2,… , 푃} index set of part types 
K(p) = 
1,2,… ,퐾  

index set of operations indices for 
part type p 

M = {1,2,… ,푀} index set of machine types 
C = {1,2,… , 퐶} index set of cells 
L = {1,2,… , 퐿} index set of locations 
T = {1,2,… , 푇} index set of time periods 

 
2.1.2. Model parameters 
 
퐼퐸  inter-cell material handling cost per part type p 

per unit of distance 

퐼퐴  intra-cell material handling cost per part type p 
per unit of distance 

훿  relocation cost per machine type m 
퐷  demand for part type p in period t  
푇  capacity of one unit of machine type m  

퐶 maximum number of cells that can be formed in 
each period 

퐹퐶  cost of forming a cell in period t 
퐵  upper cell size limit 
퐵  lower cell size limit 

푡  processing time of operation k on machine m 
per part type p  

푑  distance between two locations l and l’ 
훼  overhead cost of machine type m in each period 
훽  variable cost of machine type m for each unit time 
훾  purchase cost of machine type m 
푂퐶  outsourcing cost per unit part type p 
퐻퐶

 
inventory holding cost per unit part type p during 
each period 

푎

= 1
0
				if	operation	푘	of	part	푝	can	be	processed	on	machine
otherwise																																																																												

 
2.1.3. Decision variables 
 
푋  number of parts of type p processed by 

operation k on machine type m assigned to 
location l in period t 

푌  1 if cell c is formed in period t; 0, otherwise 
푊  1 if one unit of machine type m is assigned to 

location l and assigned to cell c in period t; 0, 
otherwise 

푌 ′ ′ number of parts of type p processed by 
operation k on machine type m assigned to 
location l and moved to the machine type m’ 
assigned to location l’ in period t 

푁  number of machine type m purchased in period 
t 

푁  number of machine type m removed from the 
machine depot and returned to cells in period t  

푁  number of machine type m removed from cells 

and moved to the machine depot in period t 
푂  number of part type p to be outsourced in 

period t 
푉  inventory quantity of part type p kept in period 

t and carried over to period t+1 

2.2. Mathematical model 

The developed DCMS model is now formulated as a 
mixed-integer non-linear programming model: 
 

min푍 = 푊

×푊 × 푌 × 푑
× 퐼퐴  

(1.1) 

+ 푊

×푊 × 푌
× 푑 × 퐼퐸  

(1.2) 

+
1
2 훿 ×푊 ,

+
1
2 훿

× 푊

− 푊 ,  

(1.3) 

+ 훾 .푁  (1.4) 

+ 훼 × 푊  (1.5) 

+ 훽 × 푡 × 푋  (1.6) 

퐹퐶 . 푌  (1.7) 

푂퐶 . 푂  (1.8) 

퐻퐶 .푉  (1.9) 

s.t.   

푋 ≤ 푀.푎  ∀푘 ∈ 퐾푝, ∀푝 ∈ 푃,∀푚
∈ 푀, ∀	푙 ∈ 퐿, ∀푡 ∈ 푇 (2) 
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퐷

= 푋 ,

+ 푉 − 푉 +푂  

∀푝 ∈ 푃,∀푡 ∈ 푇 (3) 

푊

= 푊

+푁 +푁 −푁  

∀푚 ∈ 푀, ∀푡 ∈ 푇 (4) 

푁

≤ 푁 − 푁  ∀푚 ∈ 푀, 푡 = 3,… , 푇 (5) 

푊 ≤ 퐿	 ∀푡 ∈ 푇 (6) 

푊

≤ 퐵 	. 푌  

∀푐 ∈ 퐶, ∀푡 ∈ 푇 (7) 

퐵 	× 푌

≤ 푊  ∀푐 ∈ 퐶, ∀푡 ∈ 푇 (8) 

푌( ) ≤ 푌   ∀푐 ∈ 퐶 − 1, ∀푡 ∈ 푇 (9) 

푋 × 푡

≤ 푇 푊  

∀푚 ∈ 푀, ∀	푙 ∈ 퐿	, ∀푡
∈ 푇 (10) 

푋

= 푌  
∀푘 ∈ 퐾푝, ∀푝 ∈ 푃,∀푚
∈ 푀, ∀	푙 ∈ 퐿, ∀푡 ∈ 푇 (11) 

푋

= 푌  
∀푘 ∈ 퐾푝, ∀푝 ∈ 푃,∀푚′
∈ 푀, ∀	푙 ∈ 퐿, ∀푡 ∈ 푇 (12) 

푊 ≤ 1 ∀푙 ∈ 퐿, ∀푡 ∈ 푇 (13) 

푋

≥ 0, 푌

≥ 0	and	integer 

∀푘 ∈ 퐾푝, ∀푝 ∈ 푃,∀푚,푚

∈ 푀, ∀	푙, 푙 ∈ 퐿, ∀푡 ∈ 푇 
(14) 

푊 ,푌 ,∈ {0, 1} ∀푚 ∈ 푀, ∀푐 ∈ 퐶, ∀푙
∈ 퐿, ∀푡 ∈ 푇 (15) 

푁 ,푁 ,푁 ,푂 , 푉
≥ 0	and	integer 

∀푝 ∈ 푃,∀푚 ∈ 푀,∀푡
∈ 푇 (16) 

 
The objective function consists of nine cost 

components. Term (1.1) is the intra-cell material handling 
cost. This cost is incurred if consecutive operations of the 

same part type are processed in the same cell, but on 
different machines. In a similar way, Term (1.2) denotes 
the inter-cell material handling cost. This cost is incurred 
whenever consecutive operations of the same part type are 
transferred between different cells. In a similar way, Term 
(1.2) denotes the inter-cell material handling cost. This 
cost is incurred whenever consecutive operations of the 
same part type are transferred between different cells. 
Term (1.3) represents the cost of reconfiguration of cells 
occurring in 1) installing a new purchased machine or a 
machine returned from the machine depot, or 2) 
uninstalling a machine removed from a cell to be kept in 
the machine depot, or 3) transferring a machine between 
two locations in the cells. Term (1.4) is the purchase costs 
of new machines. Term (1.5) incorporates the overhead 
costs which are paid only for utilized machines in the 
cells. Term (1.6) takes into account the operating costs of 
all machine types. Term (1.7) is the total costs of forming 
cells. Terms (1.8) and (1.9) are for outsourcing and 
inventory holding costs. 

Inequality (2) guarantees that each operation of a part 
is processed on the machine which is capable to process 
that operation. Constraint (3) shows that demand of each 
part can be satisfied in a period through internal 
production or external outsourcing or inventory carried 
from the previous period or each combined strategy of 
these PP decisions leading to optimal plan. Equation (4) 
describes that the number of machine type m utilized in 
the period t is equal to number of utilized machines of the 
same type in the previous period plus the number of new 
machines of the same type purchased at the beginning of 
the current period, plus the number of machines of the 
same type removed from the machine depot and returned 
to the cells or minus the number of machines of the same 
type removed from the cells and moved to the machine 
depot at the beginning of the current period. Inequality (5) 
ensures that the number of machine type m which can be 
returned from the machine depot to the cells does not 
exceed from the number of machine type m available in 
the machine depot in each period. It is worth mentioning 
that returning machines from the machine depot to cells 
can be started in the third period, because before that 
period there is no any machines in the machine depot. 
Inequality (6) necessitates that the number of machines of 
all types utilized in the cells is less than the number of 
available locations. The cell size is limited through 
Constraints (7) and (8), where the cell size lies within the 
user defined lower and upper bounds. Obviously 
machines can be assigned to a cell only if that cell is 
formed. The order of forming cells is determined by 
Constraint (9). Constraint (10) is related to the machine 
capacity. If machine type m is assigned to location l in cell 
c, then different part types can process their operations on 
this machine providing that not exceeding from the time 
capacity of that machine. Constraints (11) and (12) are 
material flow conservation equations. Constraint set (13) 
is to ensure that each location can receive one machine at 
most and only belong to one cell, simultaneously. 
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Constraints (14)-(16) provide the logical binary and non-
negativity integer necessities for the decision variables.  

The proposed model is a mixed-integer nonlinear 
programming model because of the product of decision 
variables in Expressions (1.1) and (1.2) and absolute term 
in Expressions (1.3). The linearization of these 
expressions is done in a way similar to that developed by 
Kia et al. (2012).   

Since in our integrated model, part routings, 
outsourcing demand, holding inventory, forming cells, 
machine relocation and group layout decisions are made 
in a dynamic environment, we actually incorporate a DLP, 
production planning (PP) and group layout in a DCMS 
model. In this case, an appropriate decision should be 
made among the available strategies (e.g., purchasing a 
new machine to meet increased demand requirements, 
relocating the machine that is underutilized in a cell to 
another cell where demand requirements are higher, 
keeping machines that are underutilized in a depot to 
reduce the overhead costs, outsourcing parts when 
internal production is not practical or economical, 
producing more parts in a period with lower level of 
demand and holding for the next period with lower level 
of demand, re-routing the part production due to changing 
demands, and opening or closing cells order to make a 
trade-off among resultant costs of purchasing new 
machines, machine relocation, machine overhead, 
opening or closing manufacturing cells, internal 
production, outsourcing, inventory holding and material 
handling including intra-cell, inter-cell and inter-floor). 

3. The simulated annealing algorithm for DCMS 

Kirkpatrick et al. (1983) introduced the simulated 
annealing (SA) algorithm as a stochastic neighborhood 
search technique for solving hard combinatorial 
optimization problems. SA emulates the annealing 
process which attempts to force a system to its lowest 
energy through controlled cooling. In general, the 
annealing process is as follows: 1) the temperature is 
raised to a sufficient level, 2) the temperature is 
maintained in each level for sufficient time, and 3) the 
temperature is allowed to cool under controlled conditions 
until the desired energy is reached. It has been used to 
many optimization problems in a wide variety of areas, 
including dynamic cellular manufacturing systems (Kia et 
al. 2012; Majazi Dalfard, 2013; Tavakkoli-Moghaddam et 
al. (2008), Safaei et al. 2008; Defersha and Chen, 2009, 
Defersha and Chen, 2008; Mungwattana, 2000 ). In this 
section, the SA algorithm is developed to solve the 
presented model.  

3.1. Solution representation  

A solution schema proportional to the integrated 
DCMS model for determining group layout and 
production planning consists of seven ingredients in each 

period as follows: 
1. The first ingredient related to the number of 

purchased duplicates of each machine type in each 
period is named matrix 푁푃 , . The components of 
this matrix M × 1 as shown in Fig. 1 present the 
number of purchased duplicates of each machine 
type. np = 푎 means that a duplicates of machine 
type j are purchased in period t. For example, the 
term of np  = 3 means that 3 duplicates of machine 
type 2 are purchased in period 1. 

푁푃 , =

np 		
np 		
⋮						
np 		

 

 

Fig. 1. Purchased duplicates of machines in period t 
2. The second ingredient related to the number of 

machine duplicates returned from machine depot to 
cells in each period is named matrix 푁푝푙푢푠 , . The 
components of this matrix M × 1 as shown in Fig. 2 
present the number of machine duplicates which is 
returned from machine depot to cells. nplusp = 푎 
means that a duplicates of machine type j are 
returned from machine depot to cells in period t. 

푁푝푙푢푠 , =

nplus 		
nplus 		
⋮						

nplus 		

 

 

Fig. 2. Returned duplicates of machines from depot to cells in 
period t 

3. The third ingredient related to the number of machine 
duplicates removed from cells and moved to machine 
depot in each period is named matrix 푁푚푖푛푢푠 , . 
The components of this matrix M × 1as shown in Fig. 
3 present the number of machine duplicates which is 
removed from cells and moved to machine depot. 
nminus = 푎 means that a duplicates of machine 
type j removed from cells and moved to machine 
depot in period t.  

푁푚푖푛푢푠 , =

nminus 		
nminus 		

⋮						
nminus 		

 

 

Fig. 3. Removed duplicates of machines from cells to depot in 
period t 

It is worth mentioning while completing the matrices 
푁푃 , , 푁푝푙푢푠 ,  and 푁푚푖푛푢푠 , , the constraints 
(4)-(6) should be considered.  

4. The fourth ingredient related to the simultaneous 
assignment of duplicates of each machine type to 
locations and cells is named matrix 퐿_퐶_푀 , , . The 
components of this matrix L × C as shown in Fig. 4 
represent the assignment of machine duplicates to 
locations and cells, simultaneously. 
loc_cell_ma	 , , = 푗 means that one duplicate of 
machine type j is assigned to location l and cell c in 
period t. For example, the term of loc_cell_ma	 , , =
3 means that one duplicate of machine type 3 is 

Reza Kia et al./ A Silmulated Annealing Algorithm to...

42



assigned to location 4 and cell 2 in period 1. While 
completing the matrix 퐿_퐶_푀	 , , , Constraints (6), 
(7), (8) and (13) should be satisfied. After completing 
the matrices 푁푃 ,  and 퐿_퐶_푀 , ,  for the entire 
periods, the values of 푁푝푙푢푠 ,  and 푁푚푖푛푢푠 ,  can 
be derived from Equation (4) in each period. 
 

퐿_퐶_푀 , , =
loc_cell_ma	 , , ⋯ loc_cell_ma	 , ,

⋮ ⋱ ⋮
loc_cell_ma	 , , ⋯ loc_cell_ma	 , ,

 

 

Fig. 4. Assignment of machine duplicates to locations and cells 

5. The fifth ingredient presenting the quantity of part 
operations assigned to the duplicates of each machine 

type assigned to locations is named matrix 
푃_퐿_푂푝_푄 , , , . This is a three-dimensional matrix 
P × L as shown in Fig. 5, in which each component 
contains k arrays (k is max 퐾 ) presenting the 
assignment of part operations to locations. 푤 = 푎 
means that a quantities of part type p are processed 
by operation 푘  on the machine assigned to location 
l. For example, the term of 푤 , , = 100 means that 
100 quantities of part type 2 are processed by 
operation 3 on the machine assigned to location 1. 
While completing the matrix 푃_퐿_푂푝_푄 , , , , 
Constraints (2) and (10)–(12) should be satisfied.

 

푃_퐿_푂푝_푄 , , , 	=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 푤 , , 		푤 , , …				푤 , , 	 		…			 푤 , , 		푤 , , …				푤 , , 	 			…	 푤 , , 		푤 , , …				푤 , , 	

푤 , , 		푤 , , …				푤 , , 	 		…			 푤 , , 		푤 , , …				푤 , , 	 			…	 푤 , , 		푤 , , …				푤 , , 	
⋮																																																	⋮																																																						⋮		

푤 , , 		푤 , , …				푤 , , 	 		…			 푤 , , 		푤 , , …				푤 , , 	 			…	 푤 , , 		푤 , , …				푤 , , 	
⋮																																																	⋮																																																						⋮		

푤 , , 		푤 , , …				푤 , , 	 		…			 푤 , , 		푤 , , …				푤 , , 	 			…	 푤 , , 		푤 , , …				푤 , , 	 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

Fig. 5. Assignment of part operations to machine duplicates in locations 

6. The sixth ingredient indicating the quantity of 
inventory of parts kept in period t and carried over to 
period t+1 is named matrix 푉 , . The components of 
this matrix P × 1 as shown in Fig. 6 represent the 
quantity of inventory of parts kept between each two 
periods.	v = 푎 means that a quantities of part type p 
are kept in period t and carried over to period t+1. For 
example, the term v = 50  means that 50 quantities 
of part type 3 are kept in period 1 and carried over to 
period 2. 

푉 , =

v 		
v 		
⋮						
v 		

 

 

Fig. 6. Quantity of inventory of parts kept between periods 

7. The seventh ingredient indicating the quantity of 
parts outsourced in period t is named matrix 푂 , . 
The components of this matrix P × 1 as shown in Fig. 
7 represent the quantity of outsourced parts in each 
period.	o = 푎 means that a quantities of part type p 
are outsourced in period t. For example, the term of 
o = 50  means that 50 quantities of part type 3 are 
outsourced in period 1. 

푂 , =

o 		
o 		
⋮						
o 		

 

 

Fig. 7. Quantity of outsourced parts in each period 

While completing the matrices 푃_퐿_푂푝_푄 , , , , 
V ,  and O , , Equation (3) should to be satisfied.  

In general, with combining seven ingredients 
described above, the solution representation in each 

period is obtained as shown in Fig. 8. It is obvious that 
each solution combining seven ingredients consists of the 
T structure, where T is the number of periods.  

푁푃 , 푁푝푙푢푠 , 푁푚푖푛푢푠 , 퐿
, ,

푃_퐿_푂푝_푄 , , , | 푉 , | 푂 ,

 

 

Fig. 8. Solution representation in period t 

3.2. Generating an initial solution  

The initial solution is generated according to a 
hierarchical approach, in which matrices	 퐿_퐶_푀 , , , 
푁푃 , ,	 푁푝푙푢푠 , , 푁푚푖푛푢푠 , ,	 푃_퐿_푂푝_푄 , , , , 
푉 ,  and 푂 ,  are constructed sequentially in each 

period by the random numbers limited in the determined 
interval provided that those matrices satisfy 
corresponding constraints. The generation process of 
initial solutions is described as follows: 

In the first stage, the matrix 	 퐿_퐶_푀 , ,  determining 
how duplicates of each machine type are assigned to 
locations and cells is constructed. To generate a good 
initial solution, the number of machines of each type 
which is required for processing part operations is 
estimated roughly. This is done by considering parameters 
푡  and 퐷  of each part type and randomly selecting a 
machine capable to process each operation of a part based 
on parameter 푎  .  

Then, the components of matrix 퐿_퐶_푀 , ,  receive 
numbers randomly distributed between 1 and M (the 
number of machine types) for all periods. The number of 

Journal of Optimization in Industrial Engineering 14 (2014) 37-52

43



rows is equal to the number of locations and the number 
of columns is equal to 퐶  (the maximum number of 
cells).  

Therefore, numbers in each row of matrix 퐿_퐶_푀 , ,  
show the machines assigned to the related location in the 
successive periods. Also, numbers in each column present 
the machines assigned to related cells in successive 
periods. Based on Constraint (13), each location is 
allowed to accommodate one machine at most. To satisfy 
this constraint, only one component in each row of a 
matrix can take a value greater than zero. After 
distributing these numbers in locations (rows) of 
matrix 퐿_퐶_푀 , , , cell size limits should be investigated. 
Three cases may happen by completing matrix 
퐿_퐶_푀 , , . In the first case, the number of machines 

assigned to a cell (column) is less than the lower bound of 
that cell. In this case, that cell will not be formed and 
actually all assignments to that cell will be transferred to 
other cells. In the second case, the number of machines 
assigned to a cell (column) is placed between the lower 
and upper bounds of that cell. In this case, that cell will be 
formed and all assignments to that cell will be accepted. 
In the third case, the number of machines assigned to a 
cell (column) is greater than the upper bound of that cell. 
In this case, some extra machines are randomly chosen 
and moved to next cell to reach the upper bound. By this 
procedure, Constraints (7) and (8), related to cell size 
limits, are satisfied. To satisfy Constraint (9), it is required 
to form cells in order. For example, if cell 4 was formed 
while cell 2 was not formed due to cell size limits, thus 
the machines which had been assigned to cell 4 would be 
transferred to cell 2. In fact, cell 2 is formed instead of 
cell 4. By this simple procedure, Constraint (9) is met.  

As a result, the configuration of machines in cells and 
assignments of locations to cells are determined by 
constructing of matrix 퐿_퐶_푀 , , . Based on Equation 
(4), matrices 푁푃 , ,	 푁푝푙푢푠 ,  and 푁푚푖푛푢푠 ,  are 
derived from matrices 퐿_퐶_푀 , ,  which have been 
generated in successive periods. 

After configuring cells which consists of locating 
machines in locations and assigning locations to cells by 
completing matrices 퐿_퐶_푀 , , , part operations are 
assigned to the machines assigned to the locations by 
constructing of the matrices 푃_퐿_푂푝_푄 , , ,  in 
successive periods. While completing the matrices 
푃_퐿_푂푝_푄 , , , , the Constraints (2) (i.e., machine 
process capability), (3) (i.e., part demand satisfaction),  
(10) (i.e., machine time capacity) and (11)-(12) (i.e., 
material flow conservation) should be satisfied.  
 
3.3. Neighborhood generation strategy 

 
Well-designed solution mutation (SM) operators are 

significant to the success of SA. In this research, we 
develop seven different (SM) operators. These are cell-
number mutation operator (SM1), machine-number 
mutation operator (SM2), machine-inter-cell mutation 

operator (SM3), machine-intra-cell mutation operator 
(SM4), machine-location mutation operator (SM5), route-
volume mutation operator (SM6) and part-operation 
mutation operator (SM7). To implement each one of these 
operators on a solution, a period is selected randomly and 
then the mutation operator is implemented on the selected 
period of solution. If implementing one mutation operator 
results in an infeasible solution, that solution will be 
eliminated. These operators are implemented on the 
selected period of the solution as follows. 

The cell-number mutation operator (SM1) changes the 
number of formed cells by adding or removing a formed 
cell. By this operator, the only matrix 퐿_퐶_푀 , ,  is 
changed. Therefore, if a formed cell is removed, all 
machine duplicates assigned to that cell will be reassigned 
to the other cells randomly. In addition, if a new cell is 
formed, some machine duplicates assigned to the other 
cells will be reassigned to the newly-formed cell. It is 
worth mentioning that the part operations processed by 
the randomly selected machines will be remained with 
them. Adding or removing a cell needs updating matrix 
퐿_퐶_푀 , ,  and can influence on Terms (1.1), (1.2) and 

(1.7) of the objective function. 
The machine-number mutation operator (SM2) 

changes the matrices 푁푃 , , 푁푝푙푢푠 ,  and 
푁푚푖푛푢푠 ,  by adding or removing a duplicate of a 

machine type or concurrently removing a duplicate of a 
machine type and then adding a duplicate of another 
machine type. Implementing this operator might need 
updating all matrices and can influence on all terms of the 
objective function. 

The machine-inter-cell mutation operator (SM3) 
randomly selects two different filled columns of matrix 
퐿_퐶_푀 , ,  and substitutes their values. In this way, 

different machine duplicates assigned to different cells are 
substituted between cells. The machine-intra-cell 
mutation operator (SM4) randomly selects a filled column 
of matrix 퐿_퐶_푀 , ,  and substitutes its values. In this 
way, different machine duplicates assigned to different 
locations of a cell are substituted. The machine-location 
mutation operator (SM5) randomly selects two different 
filled rows of matrix 퐿_퐶_푀 , ,  and substitutes their 
values. In this way, different machine duplicates assigned 
to different locations are substituted. Implementing these 
operators needs updating matrices 퐿_퐶_푀 , ,  and 
푃_퐿_푂푝_푄 , , ,  and can influence on Terms (1.1)-(1.3) 

of objective function. 
The route-volume mutation operator (SM6) changes 

the matrices 푃_퐿_푂푝_푄 , , , ,	 푉 , 		  and 푂 ,   by 
increasing or decreasing the production lot volumes of 
some defined routes for a part which results in 
modification of internal production volume of that part or 
concurrently decreasing a portion of a production lot and 
then increasing same volume to another production lot. 
This operator can influence on terms (1.1), (1.2), (1.6) and 
(1.8)-(1.9). 
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The part-operation mutation operator (SM7) changes 
the matrix 푃_퐿_푂푝_푄 , , ,   by selecting an operation 
of a part and changing the machine assigned to process 
that operation. This operator can influence on terms (1.1), 
(1.2) and (1.6) of objective function. 

Termination condition, acceptance/rejection 
mechanism of a neighborhood solution and cooling 
schedule including initial temperature T0, Markov chain 
length (MCL), and Cooling rate are defined as same as 
those defined by Kia et al. (2012). Also, the pseudo code 
of the developed SA for the proposed model is similar to 
that used by Kia et al. (2012). 

4. Computational Results 

To validate the proposed model and illustrate its 
various features, two small-sized examples are solved 
using GAMS 22.0 software (solver CPLEX) on an Intel® 
CoreTM2.66 GHz Personal Computer with 4 GB RAM. 
The data for the first example is taken from the example 
presented by Kia et al. (2012). 

The first example is solved to show the effect of 
variable number of cells on the model performance. 
Tables 1 and 2 are related to the information of the first 
example consisting of four part types, five machine types 
and two periods. It is assumed that each part type includes 
three sequential processing operations which can be 
processed on two alternative machines. The machine time 
capacity, relocation cost, purchasing machine cost, 
overhead cost, and machine operating cost are given in 
five columns of Table 1. For the sake of more simplicity, 
the capacity of all machines is assumed to be equal to 500 
hours per period. Furthermore, the processing time of all 
operations are presented in Table 1.  

The costs of forming cell, outsourcing and inventory 
holding for each part type are considered as 20000, 200 
and 20, respectively. The maximum number of cells 
which can be formed in each period is 4. In addition, the 
lower and upper sizes of cells in terms of number of 
machines are 2 and 3, respectively. Table 2 shows the 
distances between eight locations available in the shop 
floor. 
 

 
Table 1 
Machine and part information for the first example 

P4  P3  P2  P1     Machine info.  

3  2  1  3  2  1  3  2  1  3  2  1  βm  αm   γm    δm  Tm    

  0.83  0.49  0.46      0.39  0.65  0.76        9  1800  18000  900  500  M1  

0.74      0.33    0.99          0.79    7  1500  15000  750  500  M2  

    0.45    0.57          0.44  0.93  0.73  5  1800  18000  900  500  M3  

          0.14      0.80  0.46      9  1700  17000  850  500  M4  

0.62  0.67      0.48    0.93  0.65         0.54  8  1300  13000  650  500  M5  

0  300  700    200  Dpt  

300 700 250 500   

   
Table 2 
Distance matrix between locations for the first example 

Locations L1 L2 L3 L4 L5 L6 L7 L8 
L1 0 1 2 1 2 3 2 3 
L2 1 0 1 2 1 2 3 2 
L3 2 1 0 3 2 1 4 3 
L4 1 2 3 0 1 2 1 2 
L5 2 1 2 1 0 1 2 1 
L6 3 2 1 2 1 0 3 2 
L7 2 3 4 1 2 3 0 1 
L8 3 2 3 2 1 2 1 0 

 
The solution obtained by the developed model for the 

first example is detailed out in the following. Also, to 
show the advantage of the developed model due to 
considering the variable number of cells, its obtained 
solution is compared with that obtained by the previous 
model presented by Kia et al. (2012). 

Kia et al. (2012) discussed that the proposed model 
was NP-hard as it integrates the dynamic cell formation 
problem with other manufacturing features including the 
flexible cell reconfiguration, the part routing problem 
with alternate routings and the allocation of machines 

based on the quadratic assignment problem (QAP). In 
addition, Venugopal and Narendran (1992) have shown 
that considering the number of cells as decision variable 
makes solving the problem of machine allocation to cells 
based on QAP much difficult. On the other hand, because 
of the dynamic nature of PP problems, the integration of 
the CMS and PP makes the problem very complex and 
computationally hard (Safaei and Tavakkoli-
Moghaddam., 2009). As a result, the model presented in 
this paper which has been developed based on the NP-
hard model designed by Kia et al. (2012) becomes much 
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complicated by incorporating variable number of cells 
and PP decisions.   

The optimal solution is obtained after 74159 seconds 
(i.e., about 20 hours) for the first example which consists 
of 652,619 variables and 751,238 constraints. This 
implies the NP-hardness of the proposed model even in 
solving such a small-sized example.  The cell 
configurations, machine layout and material flow for two 
periods corresponding to the best solutions obtained using 
the model presented by Kia et al. (2012) with three cells 
and the proposed model in this paper with two optimal 
cells are shown in Tables 3 and 4, respectively. These 
tables show the advantage of the proposed model with 
variable number of cells. As can be seen, in the optimal 
solution of the developed model with variable number of 
cells, two cells in each period are formed. This reduces 
the forming cost of cells in the developed model 
compared with the previous model where forming three 
cells had been predetermined by system designer. It is 
worth mentioning that in the optimal solution for the 
developed model, the demands of all parts in each period 
are satisfied by internal production in the same period and 
outsourcing demand and holding inventories between 
periods are not economic. As a result, the cost 
components related to outsourcing and inventory holding 
are equal to zero in the optimal objective function value 
(OFV). 

Here, the OFV obtained in this paper is compared to 
the previous study carried out by Kia et al. (2012). In 
order to make a fair comparison between the OFVs of two 
mathematical models, they should have same 
components. Therefore, the costs of forming cells, 
outsourcing and inventory holding should be added to the 
OFV of the previous study. Since outsourcing and 
inventory holding were not considered in the previous 

study, the only cost component remaining to be added to 
Table 5 is the forming cell cost. The optimal OFV and 
cost components for the first example obtained by the 
previous study with three cells and the developed model 
with 2 cells (i.e., the optimal number of formed cells) are 
presented in Tables 5 and 6, respectively. 

Since the number of cells which should be formed is 
predetermined to 3 in the previous study, then the cost of 
forming three cells in two periods is equal to 
3×2×20000=120000. However, in the developed model, 
the number of cells which should be formed is considered 
as a decision variable due to finding the optimal number 
of cells. The optimal number of cells formed in each 
period is equal to 2. This causes the cost of forming cell 
takes the value equal to 2×2×20000=80000. By 
comparing forming cell cost component of two models, it 
can be understood the developed model reduces the 
forming cell cost through finding the optimal number of 
formed cells. This reduction is equal to 120000-
80000=40000 (i.e., (40000/252812.7)×100=15%) which 
is a promising result. Also, in the optimal solution of the 
developed model, 6 machines are purchased in the first 
period and utilized for both periods. However, in the 
optimal solution of the previous model, 7 machines are 
purchased and utilized in two successive periods. 
Purchasing fewer machines results in reduction of costs of 
machine purchase and machine overhead. This reduction 
is equal to (114000+21300)-(94000-18800)=225000 (i.e., 
(22500/252812.7)×100=9%) which reveals another 
capability of the proposed model to reduce the total costs 
of  forming cell, machine purchase and machine overhead 
through forming cells in optimal numbers. 

 
 

 
Table 3 
Machine locations and part-operation allocations to the machines for the first example with predetermined number of cells (three cells in each period).  

P4 P3 P2 P1 Machine info 
3  2  1  3  2  1  3  2  1  3  2  1  L  M  C 
            352  146  352        7  M1  C1  
              206          4  M5  
                  200      1  M2  C2  
                        3  M2  
                    200  200  2  M3  
      300      348  348          8  M1  C3  
        300  300      348        5  M4  

 
P4 P3 P2 P1 Machine info 

3  2  1  3  2  1  3  2  1  3  2  1  L  M  C 
273      700            105  26    3  M2  

C1    273  273                79  105  2  M3  
        700  700              6  M4  
    27              395  395    1  M2  C2  
27  27                    395  4  M5  
                        7  M1 C3  
            250  250  250        8  M1 

 
 

Period 1 

Period 2 
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Table 4 
Machine locations and part-operation allocations to the machines for the first example with optimal number of cells (two cells in each period) 

P4 P3 P2 P1 Machine info 
3  2  1  3  2  1  3  2  1  3  2  1  L  M  C 
                484        1  M4  C1  
            199  484         4 M5 
            501  216  216        7  M1  
        160                2  M5  C2  
      300    300              5  M2  
        140          200  200  200  8  M3  

 
P4 P3 P2 P1 Machine info 

3  2  1  3  2  1  3  2  1  3  2  1  L  M  C 
          700      13  262      1  M4  C1  

300  300          71  71          4 M5 
    300        166  166  237        7  M1  
        700    13  13        262  2  M5  C2  
      700              262    5  M2  
                238  238  238 8  M3    

 
Table 5 
Optimal OFV and cost components for the first example with three cells 

Forming cell Processing 
machine  Machine overhead  Purchasing 

machine  
Machine 

relocation  
Inter-cell 

movements  
Intra-cell 

movements  OFV  

120000 35104.1 21300 114000 3700 0 13800 307904.1 
 

Table 6 
Optimal OFV and cost components for the first example with two cells 

Inventory 
holding Outsourcing Forming 

cell 
Processing 
machine  

Machine 
overhead  

Purchasing 
machine  

Machine 
relocation  

Inter-cell 
movements  

Intra-cell 
movements  OFV  

0 0 80000 37967.7 18800 94000 2350 0 19695 252812.7 

 
The consequence of these reductions in the 

components of OFV is a total reduction in the OFV which 
is equal to (307904.1-252812.7)=55091.4 (i.e., 
(56591.4/252812.7)×100=22%). Even in the case without 
considering the forming cell cost, the developed model 
has been able to reduce the OFV as equal as 187904.1-
172812.7=15091.4 (i.e., 15091.4/172812.7=9%). This is a 
remarkable improvement for such a NP-hard problem. 

To conclude, it can be understood that considering the 
number of formed cells as a decision variable in each 
period enables the developed model to reduce costs up to 
22% for a small-sized numerical example. It can be 
obviously concluded that predetermining the number of 
cells by system designer for large-sized problems can 
even prevent the model to find optimal strategy in 
forming cells and obtain minimum costs. It is illustrated 
by this numerical example that considering variable 
number of cells to be formed brings the flexibility for the 
developed model to form cells more economically.        

Since Kia et al. (2012) have clarified the significant 
improvement in the objective function value which can be 
obtained by lot splitting feature, this feature has been also 
considered in the proposed model. To demonstrate the 
effect of lot splitting feature on the performance of the 
developed model, we investigated cost savings which may 
originate from this feature. To investigate the cost saving 
as a result of splitting production lot among machines, the 
model is solved by eliminating this feature one at a time. 

If the following constraints and auxiliary decision 
variable	푍  are added to the basic model, each 
operation of a part will be processed by only one machine 
in one location. It means that the lot splitting feature will 
not be allowed. 
푍  1 if operation k of part of type p is processed by 

machine type m assigned to location l in period 
t; 0 otherwise 

푋
≤ 푀. 푍  

∀푘 ∈ 퐾푝, ∀푝 ∈ 푃,∀푚 ∈ 푀,∀	푙 ∈ 퐿, ∀푡
∈ 푇 

푍

≤ 1 

∀푘 ∈ 퐾푝, ∀푝 ∈ 푃,∀푡 ∈ 푇                (17) 

By eliminating lot splitting feature from the basic 
model using the corresponding constraints, the first 
example is recalculated to observe its impacts on the 
solution of the model. The OFV is presented in Table 7 
and cost saving (i.e., (482993-
252812.7)/252812.7×100=91%) is significant for the first 
example problem if lot splitting is allowed. The obtained 
cost saving is predictable because without lot splitting the 
workloads which can be assigned to the machines is 
reduced and as a result more machines should be 
purchased and added to system. Thus, purchasing and 
maintaining more machines needs forming additional 
cells and increases cost components related to purchasing 
machine, machine overhead and forming cell. Also, 

Period 2 

Period 1 
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presenting more machines means more intra and inter-
cell movements and imposes more material handling 
costs. The increase in all mentioned cost components 
results in a rise as 91%. The optimal solution for the first 
example without lot splitting is obtained after near 5 
hours. It is many less than 20 hours which should be spent 
for the main model to reach optimal solution. Although 
considering lot splitting feature in the main model makes 
it too much harder to be solved as that is recognized by 
comparing computational times, this example clarifies the 
significant improvement in the OFV which can be 
obtained by lot splitting feature.  Now, the second 
numerical example with three periods is presented to 
illustrate the effect of machine depot, inventory holding 
and outsourcing on the performance of the developed 
model. The data related to the parts and machines are 
given in Table 8. The main difference between the first 
and second examples is that the former contains three 
planning periods and 6 locations. 

Fig. 9 shows the cell configurations and machine 
assignments to the machine depot for three periods. Also, 
the objective function value and production plan are 
presented in Tables 9 and 10, respectively. Because of a 
high variation in demand of 4 parts in three periods, cell 

configurations are significantly different from each other 
in three periods. As can be seen, in the first period, cells 1 
and 2 are formed to process the part-operations. In the 
first period, two units of machine types 1 and 2 and one 
unit of machine types 3 and 4 are purchased and assigned 
to cells. For instance, one unit of machine types 1, 2, and 
4 are assigned to cell 1 and one unit of machine types 1, 
2, and 3 are assigned to cell 2. In the second period, cell 2 
is eliminated to decrease manufacturing capacity of 
system due to the reduced demand. In fact, one unit of 
machine types 1, 2, and 4 are removed from system and 
transferred to machine depot. Placing idle machines in 
depot enables model to reduce machine overhead costs, 
decrease forming cell cost by closing underutilized cells 
and provide empty locations accommodating required 
machines to process new part demands. In the third 
period, cell 2 is again formed because the manufacturing 
capacity in the second period is not enough to process all 
part demands in period 3. Actually, machine types 1, 2, 
and 4 which had been transferred to machine depot in 
period 2, are returned to system to increase the 
manufacturing capacity in period 3. 

 

 
Table 7 
Optimal OFV and cost components for the first example without a lot splitting feature 

Inventory 
holding Outsourcing Forming 

cell 
Processing 
machine  

Machine 
overhead  

Purchasing 
machine  

Machine 
relocation  

Inter-cell 
movements  

Intra-cell 
movements  OFV  

0 0 120000 35968 23900 158000 6625 105000 33500 482993 

 
Table 8 
Machine and part information for the second example 

P4  P3  P2  P1     Machine info.  

3  2  1  3  2  1  3  2  1  3  2  1  βm  αm   γm    δm  Tm    

  0.83  0.49  0.46      0.39    0.76        9  1800  18000  900  500  M1  

0.74      0.33    0.99    0.50      0.79    7  1500  15000  750  500  M2  

    0.45    0.57          0.44  0.93  0.73  5  1800  18000  900  500  M3  

          0.14    0.65  0.80  0.46      9  1700  17000  850  500  M4  

990  250  680    140  Dpt  

290 0 210 0   

370 730 220 470  
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M3 

L2 
M1 

L3 
M2  L1 
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M2 
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L5 
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M2 

Machine  
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Fig. 9. Best obtained machine assignments to cells and depot for the second example 
 
Table 10 shows how part demands are satisfied for 

part types 1, 2, 3 and 4 through internal production, 
inventory holding and external outsourcing during the 
three planning periods. By simultaneously considering all 

Cell 1 
Cell 2 
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of the three strategies of production planning to satisfy the 
demand for all four part types, the proposed model 
presenting the optimal production plan given in Table 10 
shows a higher flexibility in satisfying the part demand in 
compare to previous study by Kia et al. (2012). For 
example, the demand for part type 1 in period 3 is 
satisfied by manufacturing 290 parts and using the 180 
parts kept in inventory. Since the option of holding 
inventory is considered, the system can leverage the 
excess capacity of capable machines to start production of 
part type 1 in quantities of 180 units during period 2. The 
system utilizes any surplus capacities of machines in 
period 2 to produce this inventory, for the reason that 
machine capacities in period 3 is insufficient to satisfy the 
whole demand and also outsourcing is economically 
unbeneficial. 

If the inventory holding strategy had not been allowed, 
the model would have had to outsource 180 units of part 1 
demand in period 3 because of capacity shortage. 
Outsourcing 180 units of part 1 would impose outsourcing 
cost equal to 180×200=36000 which increases OFV up to 
447614.4 (i.e., 36000/411614.4=9%).   

 Also, a portion of part type 4 demands equal to 340 
units has to be outsourced in the first period to satisfy 
whole demand. This is due to insufficient machine 
availabilities and processing capacities for the required 
operations. If the outsourcing strategy had not been 
allowed, the model would not have been able to satisfy all 
parts demand by only using internal production because 
of shortage capacity. As a result, finding a feasible 
solution for the second example would have been 

impossible. In the first period, all 6 locations 
accommodate 6 machines and there is no empty space for 
extra machines. Therefore, to increase the processing 
capacity of system and manufacturing all parts demand in 
perio1 internally, extra locations should be added to the 
present shop floor with 6 locations.    

Finally, it is worth mentioning that considering the 
manufacturing attributes such as alternative process 
routing, purchasing machine, duplicate machines, 
machine depot, lot splitting, flexible cell configuration, 
varying number of formed cells and the production 
planning decisions, (i.e., inventory holding, outsourcing 
demand and internal part production) bring flexibility for 
the proposed model to respond changing part demand and 
product mix. 

Table 11 shows that outsourcing is imposed in period 
1 because there is no surplus capacity of machines to 
produce parts internally. As can be seen, in the first period 
the full capacity of each machine equal to 500 hours is 
utilized except machine M2 in location L5. As the only 
operation of part type 4 which can be processed by 
machine type 2 is the third one, a portion of part 4 
demands equal to 340 units is outsourced because of 
capacity shortage in the first period. In period 3, the full 
capacity of machine M3 in location L5 is utilized. As the 
first operation of part 1 can be processed only by machine 
type 3, a portion of part 1 demands equal to 180 units is 
produced excess to its demand in period 2 and kept as 
inventory to be used in period 3 to satisfy whole demand 
of part 1 in period 3 equal to 470 units. 

 
 
 

Table 9 
Optimal OFV and cost components for the second example with three periods 

Inventory 
holding 

Outsourcing Forming 
cell 

Processing 
machine  

Machine 
overhead   

Purchasing 
machine  

Machine 
relocation   

Inter-cell 
movements  

Intra-cell 
movements  

OFV  

3600 68000 100000 49789.4 25300 101000 8475 14500 40950 411614.4 

 
 
Table 10 
Optimal production plan for the second example with three periods 

 Period 1 Period 2 Period 3 
P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

Outsourcing    340         
Inventory     180        
Production 140 680 250 650 180 210 0 290 290 220 730 370 
Demand 140 680 250 990 0 210 0 290 470 220 730 370 

 
 
Table 11 
Machine and cell utilization for the second example with three periods 

Period 1 Period 2 Period 3 
Cell 1 Cell 2 Cell 1 Cell 1 Cell 2 
1483 1491.4 1311.5 1125.2 1262.9 

L4 L5 L6 L1 L2 L3 L5 L6 L3 L1 L2 L3 L4 L5 L6 
M4 M2 M1 M3 M1 M2 M2 M3 M1 M1 M2 M1 M4 M3 M2 
499 485.6     498.4 496.5 498 496.9 319.6 495 496.9      253 383.8 488.4 293.2 499.7 470 
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In this model, some of the PP attributes such as 
inventories holding and outsourcing of parts are 
incorporated to form the manufacturing cells because 
DCMS and PP decisions are interrelated and may not be 
handled sequentially (Defersha and Chen, 2007). In fact, a 
trade-off between outsourcing costs, holding costs and 
internal production costs (i.e., forming cells, material 
handling, machine purchase, machine overhead, machine 
relocation and machine processing) is managed. 

In this section, twelve example problems are solved 
using the extended SA to evaluate its computational 

efficiency in terms of objective value and computation 
time. The obtained solutions by SA are compared with 
those obtained by GAMS software and shown in Table 12.  

As it has been reported in the literature, an effective 
cooling schedule is essential for reducing the amount of 
time required by the algorithm to find an optimal solution. 
But cooling schedules are almost always heuristic and it 
would be needed to balance moderately the computational 
time with the simulated annealing dependence on problem 
size.

 
 

Table 12 
Comparison between SA and GAMS 
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0 0.19 11 
 

122395 opt 122395.5 
 

0.995 30 100 3000 
 

4 2 2 2 2 2 1 

0 25 13 
 

174926 opt 174926 
 

0.995 30 100 3000 
 

5 3 2 3 2 2 2 

4 4773 562 
 

243124 opt 254300 
 

0.995 50 100 50000 
 

6 3 2 4 2 3 3 

1 4472 955 
 

276286 opt 280296 
 

0.995 50 100 50000 
 

7 3 3 4 2 4 4 

3 7400 1003 
 

264821 Best 274911 
 

0.995 200 100 100000 
 

8 3 3 5 2 4 5 

-2 10147 659 
 

321303Best 314022 
 

0.995 200 100 100000 
 

8 3 3 5 2 5 6 

-4 13012 1318 
 412762 

Best 394624 
 

0.995 200 100 100000 
 

8 3 2 5 3 5 7 

-1 34608 883 
 

312602.Best 309281 
 

0.995 200 100 150000 
 

6 4 2 5 3 5 8 

5 21162 578 
 

333556.Best 351090 
 

0.995 200 100 150000 
 

6 3 2 5 4 6 9 

0 14658 278 
 

208639.Best 208050 
 

0.995 200 100 150000 
 

6 3 2 4 4 4 10 

-3 15026 3518 
 

494261.Best 480924 
 

0.995 200 100 200000 
 

9 4 3 4 3 4 11 

- - 3013 
 Out of 

Memory 482320 
 

0.995 200 100 200000 
 

10 3 3 6 4 6 12 

 
By carrying out several experiments on small 

numerical samples 1-4 to gain insights into some 
assumptions and intuition behind cooling schedules, a 
theoretical framework for parameter setting of the 
simulated annealing algorithm is presented based on the 
model size. The simulated annealing schedule is defined 

by initial temperatures in points [30000, 50000, 100000,  
150000], a MCL in points [30, 50, 200] and final 
temperatures set to 100 as well as a cooling rate α equal to 
0.995.  

Because of exponential reduction of error probability, 
several short-term runs of SA results better than a long-
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term one (Defersha and Chen, 2008). Hence, each run has 
been repeated 5 times to solve each example and the best 
obtained solution among them has been reported. 

Since there are numerous decision variables and 
constraints in the proposed model, some of the numerical 
examples cannot be solved in a reasonable time by 
GAMS. Therefore, the solving process will be continued 
until the GAMS software encounters a resource limit as 
an out of memory message. At this point, the best 
obtained value of objective function is reported as 
GAMSBest to be compared with SA. 

GAMS can only reach optimal solutions for examples 
1-4, reported as GAMSOpt. For the examples 5-11, GAMS 
is interrupted because of out of memory predicament. As 
a result, the best obtained solutions for those examples are 
not optimal. Generating numerical examples is stopped at 
example 12, as the solution space is enlarged so much that 
GAMS even cannot generate a feasible solution before 
encountering out of memory message. As can be seen, the 
obtained solutions by SA are better than those obtained by 
GAMS for examples 6-8 and 10-11. This can be regarded 
as a remarkable achievement for a metaheuristic 
algorithm, especially in solving large-scaled problems 
which cannot be solved optimally by optimization 
packages such as GAMS.   
In general, the following results can be concluded: 
 SA algorithm found the optimal solutions, in 

nearly as same computational times as GAMS for 
example problems 1 and 2. In addition, for 
examples 3-5 and 9, the near optimal solutions are 
obtained by SA in a relative gap lower than 5% 
compared to those obtained by GAMS in less 
computational times.    

 The SA algorithm found better near-optimal 
solutions than GAMS in less computational times 
for example problems 6-8 and 10-11. 

These promising results were obtained by SA because 
of the elaborately-designed solution representation 
schema, hierarchical procedure to generate initial solution 
and explorative solution mutation operators built into the 
SA algorithm.  

5. Conclusion 

This paper presented a mixed-integer linearized 
programming (MINLP) model integrating CF, GL and PP 
decisions under a dynamic environment. The presented 
model has combined large portion of design features 
introduced in the previous studies, such as alternative 
process routings, operation sequence, processing time, 
production volume of parts, purchasing machine, 
duplicate machines, machine capacity, lot splitting, group 
layout, multi-rows layout of equal area facilities, and 
flexible reconfiguration. Additionally, it has addressed 
other important design features including machine depot, 
variable number of cells, outsourcing and inventory 
holding of parts. The effect of newly-incorporated design 

features on improving the performance of developed 
model has been illustrated by the numerical examples. 
The obtained results revealed that the variable number of 
cells could considerably improve the performance of 
extended model by reducing forming cell cost. 
Furthermore, machine depot could be effective in 
improving the performance of model by reducing machine 
overhead cost and configuring cells more usefully due to 
removing idle machines from cells. As well, production 
planning decisions were shown that could be improving 
by satisfying high volume demands due to leveling 
machine utilization in different periods.      

The extended model was capable to determine 
optimally the production volume of alternative processing 
routes of each part, the material flow happening between 
different machines, the cell configuration, the machine 
locations, the number of formed cells, the number of 
purchased machines, the number of machines kept in 
depot, the production plan for each part type by satisfying 
demand through internal production, outsourcing and 
inventory holding. The objective was minimizing the total 
costs of intra and inter-cell material handling, machine 
relocation, purchasing new machines, machine overhead, 
machine processing, forming cells, outsourcing and 
inventory holding.  

Since the integrated model belongs to NP-hard 
problems, an efficient simulated annealing algorithm with 
an effective solution structure and seven mutation 
operators has been developed to solve the model. In this 
study, a heuristic hierarchical procedure was designed to 
generate the initial solution with good quality. In addition, 
the solution structure was presented as a matrix with 
seven ingredients fulfilled hierarchically to satisfy all 
constraints and successive solutions were produced from 
the initial solution by implementing elaborately-designed 
mutation operators. All components in the objective 
functions could be influenced by the designed operators to 
more exploration of solution space. The performance of 
SA was evaluated and compared to GAMS software by 12 
small/medium-sized problems taken from the literature, 
with respect to the OFV and computational time. In these 
tests, the proposed SA algorithm found the better 
solutions and performed better than the GAMS especially 
as the size of problem increases. 

Incorporating other features, such as introducing 
uncertainty in part demands, machine time capacity and 
cost coefficients, integrating with reliability and labor 
issues, designing layout of unequal-area facilities, and 
solving more numerical examples especially in real cases 
using other new meta-heuristics will be left to future  
research.  

References 

[1] Ahkioon, S. Bulgak, A.A. and Bektas, T. (2009). ‘Cellular 
manufacturing systems design with routing flexibility, 
machine procurement, production planning and dynamic 

Journal of Optimization in Industrial Engineering 14 (2014) 37-52

51



system reconfiguration’, International Journal of 
Production Research, 47(6), 1573–1600. 

[2] Baykasoglu, A. and Gindy, N.N.Z. (2001). ‘A simulated 
annealing algorithm for dynamic layout problem’, 
Computers & Operations Research, 28(14), 1403–1426. 

[3] Defersha, F.M. and Chen, M. (2006). ‘A comprehensive 
mathematical model for the design of cellular 
manufacturing systems’, International Journal of 
Production Economics, 103, 767–783. 

[4] Defersha, F.M. and Chen, M. (2007). ‘A parallel genetic 
algorithm for dynamic cell formation in cellular 
manufacturing systems’, International Journal of 
Production Research, 45 (1), 1–25. 

[5] Defersha, F.M. and Chen, M. (2008). ‘A parallel multiple 
Markov chain simulated annealing for multi-period 
manufacturing cell formation problems’, International 
Journal of Advance Manufacturing Technology, 37, 140–
56. 

[6] Defersha, F.M. and Chen, M. (2009). ‘Simulated annealing 
algorithm for dynamic system reconfiguration and 
production planning in cellular manufacturing’, Int. J. 
Manufacturing Technology and Management,  17(1/2), 
103–124. 

[7] Drolet, J. Marcoux, Y, and Abdulnour, G. (2008). 
‘Simulation-based performance comparison between 
dynamic cells, classical cells and job shops: a case study’, 
International Journal of Production Research, 46(2), 509–
536. 

[8] Javadi, B. Jolai, F. Slomp, J. Rabbani, M. and Tavakkoli-
Moghaddam, R. (2013). ‘An integrated approach for the 
cell formation and layout design in cellular manufacturing 
systems’, International Journal of Production Research, 
DOI:10.1080/00207543.2013.791755. 

[9] Jolai, F. Tavakkoli-Moghaddam, R. Golmohammadi, A. 
and Javadi, B. (2011). ‘An Electromagnetism-like 
algorithm for cell formation and layout problem’, Expert 
Systems with Applications, 39(2), 2172-2182. 

[10] Kia, R. Shirazi, H. Javadian, N. and Tavakkoli-
Moghaddam, R. (2013). ‘A multi-objective model for 
designing a group layout of a dynamic cellular 
manufacturing system’, Journal of Industrial Engineering 
International, 9:8. 

[11] Kia, R. Baboli, A. Javadian, N. Tavakkoli-Moghaddam, R. 
Kazemi, M. and Khorrami, J. (2012). ‘Solving a group 
layout design model of a dynamic cellular manufacturing 
system with alternative process routings, lot splitting and 
flexible reconfiguration by simulated annealing’, 
Computers & Operations Research, 39, 2642–2658. 

[12] Kamali-Dolat-Abadi, A.H. Pasandideh, S.H.R. and Abdi-
Khalife, M. (2010)  ‘Layout of cellular manufacturing 
system in dynamic condition’, Journal of Industrial 
Engineering. 3(5), 43-54. 

[13] Kirkpatrick, S. Gelatt, Jr.C.D. and Vecchi, MP. (1983). 
‘Optimisation by simulated annealing’, Science, 220(6), 
71-80. 

[14] Majazi Dalfard, V. (2013). ‘New mathematical model for 
problem of dynamic cell formation based on number and 
average length of intra and intercellular movements’, 
Applied Mathematical Modelling, 37 (4), 1884-1896.  

[15] Mahdavi, I. Aalaei, A. Paydar, M.M. and Solimanpur, M. 
(2010). ‘Designing a mathematical model for dynamic 
cellular manufacturing systems considering production 
planning and worker assignment’, Computers and 
Mathematics with Applications. 60, 1014–25. 

[16] Mungwattana, A. (2000). ‘Design of cellular 

manufacturing systems for dynamic and uncertain 
production requirements with presence of routing 
flexibility, PhD thesis submitted to the Faculty of the 
Virginia Polytechnic Institute and State University, 
Blackburg, VA. 

[17] Rafiee, K. Rabbani, M. Rafiei, H. and Rahimi-Vahed, A. 
(2011). ‘A new approach towards integrated cell formation 
and inventory lot sizing in an unreliable cellular 
manufacturing system’, Applied Mathematical Modelling, 
35, 1810–1819. 

[18] Rheault, M. Drolet, J. and Abdulnour, G. (1995). 
‘Physically reconfigurable virtual cells: a dynamic model 
for a highly dynamic environment’, Computers & 
Industrial Engineering, 29 (1–4). 221–225. 

[19] Rosenblatt, M.J., (1986). ‘The dynamics of plant layout’, 
Management Science, 32 (1), 76–86. 

[20] Saidi-Mehrabad, M. and Mirnezami-Ziabari, S. M.  
(2011). ‘Developing a Multi-objective Mathematical 
Model for Dynamic Cellular Manufacturing Systems’, 
Journal of Optimization in Industrial Engineering. 4(7), 1-
9 

[21] Safaei, N. and Tavakkoli-Moghaddam, R. (2009). 
‘Integrated multi-period cell formation and subcontracting 
production planning in dynamic cellular manufacturing’, 
International Journal of Production Economics, 120 (2), 
301–314. 

[22] Safaei, N. Saidi-Mehrabad, M. and Jabal-Ameli, M.S. 
(2008). ‘A hybrid simulated annealing for solving an 
extended model of dynamic cellular manufacturing 
system’, European Journal of Operational Research. 185. 
563–592. 

[23] Saidi-Mehrabad, M. and Safaei, N. (2007). ‘A new model 
of dynamic cell formation by a neural approach’, 
International Journal of Advanced Manufacturing 
Technology. 33, 1001–1009. 

[24] Saxena, L.K. and Jain, P.K. (2011). ‘Dynamic cellular 
manufacturing systems design—a comprehensive model’, 
International Journal of Advanced Manufacturing 
Technology 53 (1), 11–34. 

[25] Tavakkoli-Moghaddam, R. Safaei, N. and Sassani, F. 
(2008). ‘A new solution for a dynamic cell formation 
problem with alternative routing and machine costs using 
simulated annealing’, Journal of Operational Research 
Society, 59(4): 443–54. 

[26] Venugopal, V. And Narendran, T. (1992). ‘Cell formation 
in manufacturing systems through simulated annealing: An 
experimental evaluation’, European Journal of Operational 
Research. 63, 409–22. 

[27] Wu, X. Chu, C.H. Wang, Y. and Yan, W. (2007). ‘A 
genetic algorithm for cellular manufacturing design and 
layout’, European Journal of Operational Research. 181, 
156–167. 

[28] Wemmerlov, U. Hyer, and N.L. (1986). ‘Procedures for 
the part family/machine group identification problem in 
cellular manufacture’, Journal of Operations Management. 
6, 125–147.  

 

   

Reza Kia et al./ A Silmulated Annealing Algorithm to...

52


