• فهرست مقالات Thermoelasticity without energy dissipation

      • دسترسی آزاد مقاله

        1 - Free Vibration Analysis of Micropolar Thermoelastic Cylindrical Curved Plate in Circumferential Direction
        G Partap R Kumar
        The free vibration analysis ofhomogeneous isotropic micropolar thermoelastic cylindrical curved plate in circumferential direction has been investigated in the context of generalized themoelasticity III, recently developed by Green and Naghdi. The model has been simplif چکیده کامل
        The free vibration analysis ofhomogeneous isotropic micropolar thermoelastic cylindrical curved plate in circumferential direction has been investigated in the context of generalized themoelasticity III, recently developed by Green and Naghdi. The model has been simplified using Helmholtz decomposition technique and the resulting equations have been solved using separation of variable method. Mathematical modeling of the problem to obtain dispersion curves for curved isotropic plate leads to coupled differential equations and solutions are obtained by using Bessel functions. The frequency equations connecting the frequency with circumferential wave number and other physical parameters are derived for stress free cylindrical plate. In order to illustrate theoretical development, numerical solutions are obtained and presented graphically for a magnesium crystal. پرونده مقاله
      • دسترسی آزاد مقاله

        2 - Wave Propagation at the Boundary Surface of Elastic Layer Overlaying a Thermoelastic Without Energy Dissipation Half-space
        R Kumar V Chawla
        The present investigation is to study the surface wave propagation at imperfect boundary between an isotropic thermoelastic without energy dissipation half-space and an isotropic elastic layer of finite thickness. The penetration depth of longitudinal, transverse, and t چکیده کامل
        The present investigation is to study the surface wave propagation at imperfect boundary between an isotropic thermoelastic without energy dissipation half-space and an isotropic elastic layer of finite thickness. The penetration depth of longitudinal, transverse, and thermal waves has been obtained. The secular equation for surface waves in compact form is derived after developing the mathematical model. The components of temperature distribution, normal and tangential stress are computed at the interface and presented graphically. The effect of stiffness is shown on the resulting amplitudes and the effect of thermal is shown on the penetration depth of various waves. A particular case of interest is also deduced. Some special cases of interest are also deduced from the present investigation. پرونده مقاله