
 

© 2010 IAU, Arak Branch. All rights reserved.                                                                                                    

 

Journal of Solid Mechanics Vol. 2, No. 4 (2010) pp. 363-375 

Wave Propagation at the Boundary Surface of Elastic Layer 
Overlaying a Thermoelastic Without Energy Dissipation Half-
space 

R. Kumar*, V. Chawla 

Department of Mathematics, Kurukshetra University, Kurukshetra-136119, Haryana, India  

Received 7 October 2010; accepted 15 December 2010 

 ABSTRACT 

 The present investigation is to study the surface wave propagation at imperfect boundary between 
an isotropic thermoelastic without energy dissipation half-space and an isotropic elastic layer of 
finite thickness. The penetration depth of longitudinal, transverse, and thermal waves has been 
obtained. The secular equation for surface waves in compact form is derived after developing the 
mathematical model. The components of temperature distribution, normal and tangential stress are 
computed at the interface and presented graphically. The effect of stiffness is shown on the 
resulting amplitudes and the effect of thermal is shown on the penetration depth of various waves. 
A particular case of interest is also deduced. Some special cases of interest are also deduced from 
the present investigation. 

© 2010 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HERE are two possible boundary conditions at an interface of a solid state interface. One boundary condition 
is for perfectly bonded interface and other is slip boundary condition. A generalization of this concept is that of 

imperfectly bonded interface for which the displacement across the surface need not be continuous. Imperfect 
bonding mean that the traction is continuous across the interface but the small displacement is not. The small vector 
difference in the displacement is assumed to depend linearly on the traction vector. Precisely jumps in the 
displacement components are assumed to be proportional (in terms of spring factor type interface parameters) to 
their respective interface components. The infinite values of interface parameters mean vanishing of displacement 
jumps and therefore correspond to perfect bond interface and zero values of interface parameter correspond to free 
semi space. Recently, various authors have used the imperfect conditions at an interface to study various types of 
problems. Interface modeling has been subject of numerous studies in material science and composite structure. The 
importance of researches in this topic cannot be overemphasized as it is directly related to the prediction of the 
overall materials properties, delamination, transmission of force, etc (Refs [1-9] have been introduced the three 
phase and like spring models). 

The classical theory of heat conduction based on the Fourier’s law (i.e. the heat flux is proportional to 
temperature gradient) leads to the diffusion equation, which is not well accepted from a physical point of view. 
Theoretical consideration of this problem has been the subject of many investigations, both in cases of stationary 
rigid solid and deformable elastic solid. A comprehensive review is given by Joseph and Preziosi [10] who cite a 
large number of papers on this subject. The articles of Dreyer and Struchtrup [11] and Caviglia et al. [12] provide an 
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extensive survey of work on experiments involving the propagation of heat as thermal wave. Extensive reviews on 
the second sound theories can be found in the work of Chandrasekharaiah [13] and Muller and Ruggeri [14]. 

In the recent survey of Chandrasekharaiah [15] and Hetnarski and Ignazack [16], the theory proposed by Green 
and Naghdi [17-21] is considered as an alternative way of formulation of the propagation of heat. This theory is 
developed in a rational way to produce a fully consistent theory which is capable of incorporating thermal pulse 
transmission in a logical manner. Green and Naghdi use an entropy equality rather than entropy inequality. The 
characterization of material response for the thermal phenomena is based on three types of constitutive functions, 
labeled as type I, II and III. The nature of these types of constitutive equations are such as, when the theory of type I 
is linearized, the parabolic equation of heat conduction arises(i.e. theory is based on Fourier’s Law), whereas 
linearized version of type II and III permit propagation of thermal wave finite speed, which is more suitable from 
physical point of view. In the present paper, we are dealing with theory of type II. This type of theory does not 
involve the dissipation of energy. So it is generally known as thermoelasticity without energy dissipation. It is 
pertinent to recall that Green and Naghdi [18-20] wrote: “this type of theory …type II, since it involves no 
dissipation of energy is perhaps a more natural candidate for its identification as thermoelasticity than the usual 
theory”. In this paper, linear model is adopted to represent the imperfectly bonded interface conditions. The linear 
model is simplified and idealized situation of imperfectly bonded interface, where the discontinuities in 
displacements at interfaces have a linear relationship with the interface stresses. 

Scott [22] studied the energy and dissipation of Inhomogeneous plane waves in thermoelasticity. Ciarletta [23] 
has extended thermoelasticity without energy dissipation to take into account the micropolar effects. Kalpakides and 
Maugin [25] derived the conservation laws for the Green-Nagadi theory of thermoelasticity without energy 
dissipation. Recently, Othman and Song [25] discussed the reflection of plane waves from an elastic solid half-space 
under hydrostatic initial stress without energy dissipation. Chirita and Ciarletta [26] investigated the spatial behavior 
for non-standard problem in linear thermoelasticity without energy dissipation. Jiangong Zhang and Xue [27] 
studied the generalized thermoelastic waves in functionally graded plates without energy dissipation, Jiangong, et al. 
[28] discussed circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy 
dissipation. Youssef [29] investigated the theory of two temperature thermoelasticity without energy dissipation. 
Jiangong et al. [30] studied the guided thermoelastic wave propagation in layered plates without energy dissipation. 

The aim of the present paper is to study the wave propagation at imperfect boundary between an isotropic elastic 
layer and isotropic thermoelastic without energy dissipation half space. The exact nature of the layers beneath the 
earth’s surface is not known. One has, therefore, to consider various appropriate models for the purpose of 
theoretical investigations. These problems not only provide better information about the internal composition of the 
earth but also helpful in exploration of valuable materials beneath the earth surface. The penetration depth of 
different waves   has been plotted graphically. The expression for amplitude ratio of normal and tangential stress are 
also obtained and depicted graphically. Some special cases of interest are also deduced from the present 
investigation. 

2    BASIC EQUATIONS  

Following Green and Naghdi [20], the basic governing equations for thermoelastic without energy dissipation solid 
in the absence of body forces and heat sources are 
 
(i) Constitutive relations: 
 

, , ,( )ij r r ij i j j i iju u u T    = + + -  (1)
 

 
(ii) Equation of motion 

, , ,( )i jj j ij i iu u T u    + + - =   (2)
 

 
(iii) Heat conduction equation 

2 2
*

0 ,2 2

( )
, , 1,2,3ii

T u
C T KT i j

t t
 ¶ ¶ ⋅

+ = =
¶ ¶


 (3)
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Here, (3 2 ) t   = +  where  and    are Lame’s constants, t  is the coefficient of linear thermal expansion 
* and C are, respectively. The density and specific heat at constant strain ( )ij ji = , are respectively, the 

components of stress and strain tensor, u is the component of displacement vector and K is the thermal 
conductivity,T0 is the reference temperature assumed to be such that and t is the time. The symbols “,” and “.” 
correspond to partial derivative and time derivative w.r.t. spatial variable, respectively, ij  is the Kronecker delta 

and 1 2 2
ˆˆ ˆ( / ) ( / ) ( / )i x j x k x= ¶ ¶ + ¶ ¶ + ¶ ¶ . Following Bullen [21], the equations of motion and constitutive relations in 

isotropic elastic medium are given by
 
 

 
2( ) ( )e e e e e e eu u u   +  ⋅ +  =   (4)

 

2e e e e
ij ij ij     = +  (5)

 

 
where 
 

,
e e

k ku =  (6)
 

, ,( ) 2, , 1,2,3e e e
ij i j j iu u i j = + =  (7)

 

 

Here, 1 2 3( , , )e e e eu u u u=


 is the displacement vector, e is the density of the isotropic medium and  and e e  are the 

Lame’s constants and 2 2 2 2 2 2 2
1 2 3/ / /         x x x . 

3   FORMULATION AND SOLUTION OF THE PROBLEM
 
 

We consider an isotropic elastic layer (Medium M1) of thickness H overlaying an isotropic, thermoelastic without 
energy dissipation half-space (Medium M2). The origin of the co-ordinate system 1 2 3( , )x x x  is taken at any point on 

the horizontal surface and x1-axis in the direction of wave propagation and x3- axis pointing vertically downward 
into the half space so that all particles on a line parallel to 2x - axis are equally displaced. Therefore, all the field 

quantities will be independent of x2- axis  co-ordinate. The interface between isotropic elastic layer and 
thermoelastic without energy dissipation half space has been taken at an imperfect boundary see Fig. 1. The 
displacement vector ,u


 and temperature T for medium M2 are taken as

 
 

1 3 1 2( ,0, ), ( , , )u u u x x t=


 (8)
 

 

and displacement vector eu


 for the layer (Medium M1) is taken as 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
Fig.1 
Geometry of the problem. 
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1 3( ,0, )e e eu u u=


 (9)
 

 
The dimensionless quantities are defined as: 

* *
*1 1 1 1 1
1 2 * *

1 1 1 01 1 0 1 1 0 1

, , , , , ,iji i
i i ij n n t t

x u a v v
x t t u k k k k

v v av a a

 
 

  



  

¢ ¢ ¢ ¢ ¢¢ ¢= = = = = = =   

 
where 
 

2
2 *11 1
1 1

1

, Ec C v
v

K





= =  (10)

 

 

and *
1  is the characteristic frequency of the medium, 1v  is the longitudinal wave velocity in the medium. For half 

space, we introduce potential function   and   through the relations following [31]. 
 

1 1
1 3 1 3

,u u
x x x x

   ¶ ¶ ¶ ¶
= - = -

¶ ¶ ¶ ¶
 (11)

 

 

and for an isotropic elastic layer, we introduce potential function e  and e  through the relations

        

 
 

1 3
1 3 3 1

,
e e e e

e eu u
x x x x

   ¶ ¶ ¶ ¶
= - = +

¶ ¶ ¶ ¶
 (12)

 

 
Making use of Eqs. (8)-(9) in Eqs. (2)-(4) and applying the dimensionless quantities defined by Eq. (10) on 

resulting equations, after suppressing the primes, with the aid of Eqs. (11)-(12) and assuming the solution of the 
resulting equations as   

 1 2 1 3( , , , , ) (1, , , , ) exp ( )       e e W S P P U i x mx ct  (13)
 

 
We obtain, after some algebraic calculation the components of displacement in layer, displacement components 

and temperature distribution in the half-space (satisfying the radiation condition Re  ( ) 0pm ³ ) are given as 

 
[ ] { }1 1 4 2 4 5 1 5 2 5 1( ) ( ) exp ( )eu i B c B s m D s D c i x ct  = + + - -  (14)

 

[ ] { }3 4 2 4 1 4 1 5 2 5 1( ) ( ) exp ( )eu m B c B s i D c D s i x ct  = - + + -  (15)
 

 
and 
 

{ }3 3 3

2

1 3 3 1
1

exp ( )pm x m x
p

p

u i e A m A e i x ct   - -

=

é ù
ê ú= - -ê ú
ë û
å  (16)

 

{ }3 3 3

2

3 3 3 1
1

exp ( )pm x m x
p p

p

u m e A i m A e i x ct   - -

=

é ù
ê ú= - + -ê ú
ë û
å  (17)

 

2

1 1 3
1

exp ( )p p p
P

T A n i x im x ct
=

é ù= + -ê úë ûå  (18)
 

 
where /c  =  is the non- dimensional phase velocity,   is the frequency; m is unknown parameter, l, W, S are 

respectively, the amplitude ratio of 1 3, ,u u T
 
w.r.t. 1u  
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and 
 

2
2 2 2

3 4 5 2 4 4 3 5 5 32
1

2
2 2 2 1

4 4 3 5 5 3 1 2 3

1 , 1, 1, cos( ), cos( ),

sin( ), sin( ), , ,
2

ee

e e e

c
m m c m c c m x c m x

v
s m x s m x

  


     
    

= - = - = - = =

= = = = =
+ +

  

 
where 1 2 1 2( 1,2) , , , ,pA p B B D D=  are arbitrary constants. The couplings constants 1 ( 1,2,3, 4)pn p =  are given in 

Appendix B and 2 ( 1,2)pm p =  are the roots of quadratic equation given in Appendix A. 

4   BOUNDARY CONDITIONS 

In this paper, linear model is adopted to represent the imperfectly bonded interface conditions. The boundary 
conditions are that the normal force of magnitude P1 tangential force of magnitude P2 are acting at the free surface. 
The discontinuities in displacements have linear relations with stresses, continuity of normal and tangential stress, 
vanishing of the gradient of temperature at the interface between the isotropic elastic layer and thermoelastic without 
energy dissipation half. Mathematically, these can be written as 
 
(i) Mechanical conditions

 

 
1

1

1

1

( )
33 1

3( )
31 2

( )

( )

i x cte
M

i x cte
M

P e
x H

P e









-

-

üï=- ïï =-ýï=- ïïþ
 (19)

 





 

 

üé ù ï= - ïê úë û ïïïé ù ï= -ê ú ïïë û =ýïï= ïïïï= ïïþ

1 2 1

1 2 1

1 2

1 2

33 3 3

31 1 1

3

33 33

31 31

( ) ( ) ( )

( ) ( ) ( )
0

( ) ( )

( ) ( )

e
M n M M

e
M t M M

e
M M

e
M M

k u u

k u u
x  (20)

 

 
(ii) Thermal condition 

3
3

0 at 0
T

x
x

¶
= =

¶
 (21)

 

 

where  and n tk k  normal and transverse stiffness of layer having dimension 3/N m  and H is the thickness of the 

layer. 

5   BEHAVIOUR OF THE COMPONENTS OF STRESSES AND TEMPERATURE DISTRIBUTION 

Substituting the values of 1 3 1 3, , , ,e eu u T u u  from Eqs. (14)-(18) in Eqs. (19)-(21) and with the aid of Eqs. (1), (5), (8)-

(10), after simplification, we obtain the value of arbitrary constant ( 1,2,3), ( 1,2),i pA B p= =  and ( 1,2)pD p = .Using 

these values, we obtain the component of stresses and temperature distribution as  
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1 3 2 3 3 3 1

1 3 2 3 3 3 1

1

( )31 2
33 2 2 3

( )31 2
31 1 2 3

( )5 6 74
33 1 4 2 4 3 5 5 4
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31 4 4 4 4
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e
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( )2 26 7
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( )31 2
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e
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m x m x m x i x ct

m c m s
D D D

T n e n e n e
D D D



   

 

 

-

- - - -

é ù
ê ú+ - + -
ê úë û

é ù
ê ú= - +
ê úë û

 (22) 

 
where  

3 5 6 71 2 4
1 2 3 1 2 1 2, , , , , ,A A A B B D D

D D D D D D D

     
= = = = = = =   

 
where ( 1,2....7)i i = and D are determinant of 7 7  given in Appendix B. 

6    PARTICULAR CASE: DERIVATION OF SECULAR EQUATION 

Substituting the values of 1 3 1 3, , , ,e eu u T u u  from Eqs. (15)-(18) in Eqs. (19)-(21) without normal and tangential forces 

and with the aid of Eqs. (1), (5), (8)-(10), after simplification, we obtain 
 

* * * *
3 5 1 4 2 2 3 1 4tan( ) 0r m H r r r    - - - =  (23)

 

 

where *

6 6
( 1,2,3, 4)p ijp R

´
= = , the entries ijR  of the determinant are given in Appendix C  and *

2  obtained by 

replacing the first column of 1  by é ù
ê úë û

T* * * *
11 21 31 510 0R R R R , *

3  obtained by replacing the second column of 2  by 

* * * * * *
12 11 42 52 62 720

T
 
 R R R R R R , *

4  obtained by replacing the third column of *
3  by 

* * * * *
13 43 53 63 730 0

T
 
 R R R R R . The entries of *

4 ( 1, 2,3, 4)p   are given in Appendix C. 

7    SPACIAL CASES  

(i) Normal stiffness 

In this case, 0nK ¹ , tK ¥  and the secular Eq. (23) remain the same. But the following will be replaced in the 

values of ( 1,2,3,4)p p =  

 

41 4 42 43 44 3

* * *
45 46 3 41 42 73

, 0, , ,

, , 0 , 0 , 0

R m R R R m

R R m R R R

  

 

= = =- =-

= = = = =
 (24)

 

 
(ii) Tangential stiffness 
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In this case, 0tK ¹ , nK ¥  and the secular Eq. (23) remain the same with the change values of ( 1,2,3,4)p p   

by taking 
 

 

   

= = = =

=- =- = = =
61 62 63 64

* * *
65 66 61 62 63

0 , , 0 , ,

, , , 0,

R R R R

R R R R R
 (25)

 

 
(iii) Welded contact 
In this case nK ¥ , 0tK ¹  and the secular Eq. (23) remain the same. But the value of ( 1,2,3,4)p p   are given 

by replacing 
 

   


   

 

= = =- =- =

= = = = =

= = = =- =-

= = =

41 4 42 43 44 3 45

* * *
46 3 41 42 43 61

62 63 64 65 66

* * *
61 62 63

, 0, , , ,

, 0 , 0 , 0, 0 ,

, 0 , , , ,

, 0,

R m R R R m R

R m R R R R

R R R R R

R R R

 (26)
 

8    NUMERICAL RESULTS AND DISCUSSION 

The material chosen for this purpose of numerical calculation is magnesium which is isotropic material. The 
physical data for a single crystal of magnesium material is given as [32]: 
 

 

 -

= ´ = ´ = ´

= ´ = ´ = ´ = ´

10 -1 -2 10 -1 -2 3
0

* 4 -1 -1 5 -1 3 -3 3 -1 -1

2.696 10 Kgm s , 1.639 10 Kgm s , 0.298 10 K,

.104 10 JKg K , 2.33 10 K , 1.74 10 Kgm , 0.170 10 Wm Kt

T

C K
  

 
The elastic parameters for Granite are given by Bullen [21]. 
 

3 -1 -1 3 -1 -1 3 -32.238 10 J Kg K , 2.238 10 J Kg K , 2.65 10 J Kgme e e  = ´ = ´ = ´   

8.1 Penetration depth 

The variations of penetration depth of the waves namely Vi (i1, 2, 3) changes with respect to frequency see Fig. 2-4. 
In this figure, the solid curve represent of case of with thermal (WT) and star symbol on these lines correspond to 
without thermal (WDT). The value of penetration depth V1 for the case WDT decrease monotonically for the range 
0 2.8£ £  and for 2.8> it increases its oscillation and finally become constant, whereas for the case of WT, the 
value of penetration depth V1 increases for the range 0 2.2£ £  and for 2.2> , it decreases and finally becomes 
constant 
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Fig. 2 
Variation of penetration depth (V1) w.r.t. frequency. 
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  Fig. 3 
Variation of penetration depth (V2) w.r.t. frequency. 
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Fig. 4 
Variation of penetration depth (V3) w.r.t. frequency. 

 
 

It is noticed that the value of penetration depth V1 in case of WDT remain more (in comparison with WT) see 
Fig. 2. The value of penetration depth V2, in both cases WT, WDT increases the small value of frequency, as 
frequency increases it becomes dispersionless for both cases see Fig. 3. It is evident that the value penetration depth 
V1 remain higher in case of WDT (in comparison with WT).The value of penetration depth of V3 increases 
monotonically 0 2.5£ £ and 2.5> , it increases with oscillation and finally become constant see Fig. 4. 

8.2 Behaviour of components of stresses and temperature distribution 

The solid line, small dashes line, big dashes line and big dashes line with dotted correspond to with stiffness (WS), 

normal stiffness (NS), tangential stiffness (TS) and welded contact (WC) respectively. The values of 33
et  for all 

cases WS, NS, TS, WC remain oscillatory for the range 0 4.5£ £  and as 4.5,>  the values of 33
et  increase 

monotonically for NS, TS and decreases for WS, WC. It is noticed that the values of 33
et  in case of WC remain more 

(in comparison with WS, NS, TS for 0 2£ < ) and for 4.5>  the values of NS remain more(in comparison with 

WS, TS, WC) see Fig. 5. The values of 31
et initially oscillate for all the cases WS, NS, TS, WC for the range 

1 4.5£ £  and for 4.5>  the value of 31
et  for WS, NS, WC decrease monotonically .It is noticed that the values 

of 31
et  for the case of WS is greater than the value of NS, TS,WC  for 1 2.5£ £ , and for the range 2.7 4.5£ £ , 

the value of WC remain more (in comparison with NS, TS, WS) and again for 4.5>  the value of 31
et  for WS 

remain more (in comparison with NS, TS, WC) see Fig. 6. 
The values of 33t  have small oscillation for all cases WS, NS, TS, WC near the application of the source as 

0 4.5£ £  and for 4.5> , the values of 33t  decrease monotonically (for WS , WC) and increases (for NS, TS). 

It is noticed that the value of 33t  remain more as   varies (i) 0 2£ £  for WS, (ii) 2.7 4.5£ £  for NS, (iii) 

4.5>  for WS. To compare other cases of stiffness see Fig. 7. The value of 31t  oscillate for all cases WS, NS, TS, 

WC when 0 4.2,£ £  as   increases, the values of 31t  increases for WS, WC and decreases  for NS, TS. It is 

noticed that the value of 31t  (i) remain smaller for WS when 0 2£ £ , (ii) remain higher for NS when 
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4 4.6£ £  (iii) remain higher for WC when 4.6,>  to compare with other corresponding stiffness see Fig. 8. 
The value of temperature (T) increase with oscillation  for all cases WS, NS, TS, WC when 1 4,£ £  as 4.6>  
the value of T decrease monotonically for WS and slightly increase for NS, TS and WC. It is evident that the value 
of T remains more as   varies (i) 1.7 2.9£ £  for WS, (ii) 3 4.3£ £  for WC, (iii) 4.3>  for WS, to 
compare with itself with each other cases of stiffness see Fig. 9. 
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Fig. 5 

Variation of normal stress et33  w.r.t. frequency. 
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Fig. 6 

Variation of tangential stress et31  w.r.t. frequency. 
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Fig. 7 
Variation of normal stress 33t  w.r.t. frequency. 
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Fig. 8 
Variation of tangential stress 31t  w.r.t. frequency. 
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Fig. 9 
Variation of temperature distribution (T) w.r.t. frequency. 

9    CONCLUSIONS 

The penetration depth of longitudinal, transverse, and thermal wave at the imperfect boundary between an isotropic 
thermoelastic without energy dissipation half-space and an isotropic elastic layer of finite thickness has been 
discussed. The secular equation in compact form has been derived. The components of temperature distribution, 
normal and tangential stress are computed at the interface and shown graphically. The effect of stiffness is shown on 
temperature distribution, normal and tangential stress and the effect of thermal is shown on the penetration depth of 
various waves. It is noticed that the values of penetration depth of longitudinal and transverse waves in case of 
without thermal remain (WTD) more in comparison with thermal (WT). The numerical results are found to be 
significantly in agreement with the corresponding analytic results. The effects of stiffness are observed on normal 
and tangential stress, and the effect of thermal are noticed on penetration depth of longitudinal and transverse waves. 
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APPENDIX A 

4 * 2 * 0  m A m B   (A.1) 
 
where 
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where 2  is obtained by replacing the second column of D by 1 2[ 0 0 0 0 0]P P , 3  is obtained by 

replacing the second column of D by 1 2[ 0 0 0 0 0]P P  and so on 7  is obtained by replacing the seventh 

column of D by 1 2[ 0 0 0 0 0]P P . 
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