• فهرست مقالات Response surface methodology (RSM)

      • دسترسی آزاد مقاله

        1 - Ultrasonic Assisted Removal of humic acids (HAs) from aqueous solutions on Uultrasonically polysulfone/ X% Fe2O3 mixed matrix membrane, An Experimental Design Methodology
        Fereydoon Khazali Shahnaz Davoudi
        In the present study, the applicability of PSF/Fe2O3 mixed matrix membrane synthesis for eliminating humic acid rapidly from aqueous solutions. Identical techniques, including FT-IR, XRD and SEM has been utilized to characterize this novel material. The investigation sh چکیده کامل
        In the present study, the applicability of PSF/Fe2O3 mixed matrix membrane synthesis for eliminating humic acid rapidly from aqueous solutions. Identical techniques, including FT-IR, XRD and SEM has been utilized to characterize this novel material. The investigation showed the applicability of PSF/Fe2O3 mixed matrix membrane as an available, suitable and low-cost adsorbent for proper deletion of humic acid from aqueous media. Also, the impacts of variables including initial humic acids (HAs) concentration (X1), pH (X2), adsorbent dosage (X3), sonication time (X4) came under scrutiny using central composite design (CCD) under response surface methodology (RSM). Additionally, the impacts of the pH of the solution, the amount of nanoparticles, concentration of humic acids (HAs), and contact time were investigated. The experiments have been designed utilizing response surface methodology. In this current article the values of 12 mg L-1, 0.03g, 7.0, 4.0 min were considered as the ideal values for humic acids (HAs) concentration, adsorbent mass, pH value and contact time respectively. The kinetics and isotherm studies proved the appropriateness of the second-order and Langmuir models for the kinetics and isotherm of the adsorption of humic acids (HAs) on the adsorbent. The adsorbent was proved to be recyclable for more than once. Since almost 99.5% of humic acids (HAs) was deleted with ideal adsorption capacities of 105 mg g−1 for humic acid (HAs). The overall results confirmed that PSF/Fe2O3 mixed matrix membrane could be a promising adsorbent material for humic acids (HAs) removal from aqueous solutions. پرونده مقاله
      • دسترسی آزاد مقاله

        2 - Ultrasonic Assisted Adsorption of Crystal Violet (CV) Dye by CM-β-CD-Fe3O4NPs Synthesis: Experimental Design Methodology
        Ali Omaniziarati Gholamhossein Vatankhah
        The applicability of the synthesized CM-β-CD-Fe3O4NPs as a novel adsorbent for eliminating Crystal Violet (CV) dye from aqueous media was investigated. This paper focuses on the development of an effective methodology to obtain the optimum removal conditions assist چکیده کامل
        The applicability of the synthesized CM-β-CD-Fe3O4NPs as a novel adsorbent for eliminating Crystal Violet (CV) dye from aqueous media was investigated. This paper focuses on the development of an effective methodology to obtain the optimum removal conditions assisted by ultrasonic to maximize removal of (CV) dye onto CM-β-CD-Fe3O4NPs in aqueous solution using response surface methodology (RSM). This novel material was characterized by different techniques such as FT-IR, XRD and SEM. The influences of variables such as initial (CV) dye concentration (X1), pH (X2), adsorbent dosage (X3), sonication time (X4) investigated by central composite design (CCD) under response surface methodology. The process was empirically modeled to reveal the significant variables and their possible interactions. The optimization conditions were set as: 10.0 mg L-1, 6.0, 5 min and 0.025 g, for ultrasound time, pH, adsorbent mass, (CV) dye concentration respectively. Finally, it was shown that the adsorption of (CV) dye removal by adsorbent was at pH 6.0. This issue that the sorption of (CV) dye conforms to the pseudo-second-order rate equation and the Langmuir model explains equilibrium data was clearly proven. The maximum monolayer capacity (qmax) was found to be 100.0 mgg-1 for (CV) dye at optimum conditions. The application of Isotherms in obtaining the thermodynamic parameters like free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) of adsorption were confirmed. The exothermicity of the process was proven by negative value of (ΔGo, ΔHo and ΔSo) which showed the affinity of CM-β-CD-Fe3O4NPs synthesis for Crystal Violet (CV) dye deletion. پرونده مقاله
      • دسترسی آزاد مقاله

        3 - Response Surface Methodology for Removal of Butyl Paraben Dye Using Zeolitic Imidazolate-67 Modified by Fe3O4 Nanoparticles from Aqueous Solutions
        Arezoo Ghadi Mohammad Pourmohammad Ali Aghababai Beni
        The applicability of Zeolitic Imidazolate-67 Modified by Fe3O4 Nanoparticles, was studied for eliminating butyl paraben dye from aqueous solutions. Identical techniques including BET, IR, XRD, and SEM have been utilized to characterize this novel material. The impacts o چکیده کامل
        The applicability of Zeolitic Imidazolate-67 Modified by Fe3O4 Nanoparticles, was studied for eliminating butyl paraben dye from aqueous solutions. Identical techniques including BET, IR, XRD, and SEM have been utilized to characterize this novel material. The impacts of variables including initial butyl paraben concentration (X1), pH (X2), adsorbent dosage (X3), and sonication time (X4) came under scrutiny using central composite design (CCD) under response surface methodology (RSM). Additionally, the impacts of the pH of the solution, the amount of nanoparticles, concentration of butyl paraben dye, and contact time were investigated. The experiments have been designed utilizing response surface methodology. In this current article the values of 10 mgL-1 , 0.03 g, 7.0, 4.0 min were considered as the ideal values for butyl paraben concentration, adsorbent mass, pH value and contact time respectively. The kinetics and isotherm studies proved the appropriateness of the second-order and Langmuir models for the kinetics and isotherm of the adsorption of butyl paraben on the adsorbent. The adsorbent was proved to be recyclable for more than once. Since almost 99.5% of butyl paraben was deleted with ideal adsorption capacities of 110 mgg−1 for butyl paraben in no time, therefore not only the short-time adsorption process was considered an advantage but also vantages in using Zeolitic Imidazolate-67 Modified by Fe3O4 Nanoparticles like being recyclable, safe, and cost-efficient made it a promising and powerful material for the aqueous solutions. پرونده مقاله
      • دسترسی آزاد مقاله

        4 - Ultrasonic Assisted Adsorption of Rhodamine B (RhB) Dye by Albizia Stem Bark Lebbeck Modified by Fe2 (MoO4)3 Nanocomposite Synthesis: Experimental Design Methodology
        Shiva Enolghozati Nasrin Choobkar Elham Pournamdari Farzaneh Marahel
        The applicability of Albizia Stem Bark Lebbeck Modified by Fe2 (MoO4)3 nanocomposite synthesis for removing Rhodamine B dye from aqueous solutions has been reported. Identical techniques including BET, IR, XRD, EDX, and SEM have been utilized to characterize this novel چکیده کامل
        The applicability of Albizia Stem Bark Lebbeck Modified by Fe2 (MoO4)3 nanocomposite synthesis for removing Rhodamine B dye from aqueous solutions has been reported. Identical techniques including BET, IR, XRD, EDX, and SEM have been utilized to characterize this novel material. Also, the impacts of variables including initial Rhodamine B dye concentration (X1), pH (X2), adsorbent dosage (X3), and Sonication time (X4) came under scrutiny using central composite design (CCD) under response surface methodology (RSM).The values of 10 mg L-1, 0.025g, 6.0, 5.0 min were considered as the ideal values for Rhodamine B dye concentration, adsorbent mass, pH value, and contact time respectively. The adsorption equilibrium and kinetic data were fitted with the Langmuir isotherm model and pseudo-second-order kinetics (R2: 0.999) with maximum adsorption capacity (qmax: 98.0 mgg-1) respectively. Thermodynamic parameters (R2: 0.998, ΔG°: -95.58 kJ mol-1, ΔH°: -29.24 kJ mol-1, ΔS°: -131.49 kJ mol-1 K-1) also indicated Rhodamine B dye adsorption is feasible, spontaneous and exothermic. The overall results confirmed that Albizia Stem Bark Lebbeck Modified by Fe2 (MoO4)3 nanocomposite could be a promising adsorbent material for Rhodamine B dye removal from aqueous solutions. پرونده مقاله
      • دسترسی آزاد مقاله

        5 - Removal of Benzyl Paraben from Wastewater Using Zeolitic Imidazolate-67 Modified by Fe3O4 Nanoparticles with Response Surface Methodology
        Mohammad Pourmohammad Arezoo Ghadi Ali Aghababai Beni
        The applicability of Zeolitic Imidazolate-67, Modified by Fe3O4 Nanoparticles, was studied for the removal of benzyl paraben from wastewater by adsorption method studied using response surface methodology (RSM). For the adsorption characterization of the adsorbent used چکیده کامل
        The applicability of Zeolitic Imidazolate-67, Modified by Fe3O4 Nanoparticles, was studied for the removal of benzyl paraben from wastewater by adsorption method studied using response surface methodology (RSM). For the adsorption characterization of the adsorbent used in benzyl paraben adsorption, BET, FTIR, XRD, and SEM analyses were performed. The impacts of variables including initial benzyl paraben concentration (X1), pH (X2), adsorbent dosage (X3), and sonication time (X4) came under scrutiny using response surface methodology (RSM). The values of 10 mg L-1, 0.03 g, 7.0, and 4.0 min were considered as the ideal values for benzyl paraben concentration, adsorbent, pH, and contact time, respectively. Adsorption equilibrium and kinetic data were fitted with the Langmuir monolayer isotherm model and pseudo-second-order kinetics (R2: 0.999) with maximum adsorption capacity (92.0 mgg-1), respectively. The predicted values were in agreement with experimental values obtained for the components of the mixture. The values at the optimized process conditions indicated a commercially viable route for optimal removal of dyes from wastewater. پرونده مقاله
      • دسترسی آزاد مقاله

        6 - An Efficient Economic-Statistical Design of Simple Linear Profiles Using a Hybrid Approach of Data Envelopment Analysis, Taguchi Loss Function, and MOPSO
        Maryam Fazelimoghadam Mohammad Javad Ershadi Seyed Taghi Akhavan Niaki
        Statistically constrained economic design for profiles usually refers to the selection of some parameters such as the sample size, sampling interval, smoothing constant, and control limit for minimizing the total implementation cost while the designed profiles demonstra چکیده کامل
        Statistically constrained economic design for profiles usually refers to the selection of some parameters such as the sample size, sampling interval, smoothing constant, and control limit for minimizing the total implementation cost while the designed profiles demonstrate a proper statistical performance. In this paper, the Lorenzen-Vance function is first used to model the implementation costs. Then, this function is extended by the Taguchi loss function to involve intangible costs. Next, a multi-objective particle swarm optimization (MOPSO) method is employed to optimize the extended model. The parameters of the MOPSO are tuned using response surface methodology (RSM). In addition, data envelopment analysis (DEA) is employed to find efficient solutions among all near-optimum solutions found by MOPSO. Finally, a sensitivity analysis based on the principal parameters of the cost function is applied to evaluate the impacts of changes on the main parameters. The results show that the proposed model is robust on some parameters such as the cost of detecting and repairing an assignable cause, variable cost of sampling, and fixed cost of sampling. پرونده مقاله
      • دسترسی آزاد مقاله

        7 - Response surface methodology analysis of the photocatalytic removal of Methylene Blue using a new Cu(II)-MOF
        Zahra Mohseni nik Majid Ramezani Saeed Jamehbozorgi Tahere Momeni Esfahani
        A novel metal–organic framework (MOF), with the formula [Cu(II)L]n (L= 4, 4′-diamino diphenyl sulfone), has been synthesized conventionally and hydrothermally methods and characterized by FT-IR, PXRD, EDX, and SEM techniques. The results MOFs were applied for photodegra چکیده کامل
        A novel metal–organic framework (MOF), with the formula [Cu(II)L]n (L= 4, 4′-diamino diphenyl sulfone), has been synthesized conventionally and hydrothermally methods and characterized by FT-IR, PXRD, EDX, and SEM techniques. The results MOFs were applied for photodegradation of Methylene Blue (MB). The influence of affecting variables, such as initial MB dye concentration (2–8mg L−1), Cu(II)-MOF mass (0.01–0.03 mg), pH (3.0–9.0), and time of irradiation (30–90 min). The photocatalytic degradation efficiency was investigated by the central composite design (CCD) methodology. The results of CCD analysis for optimum values of variables revealed that Cu(II)-MOF mass was 0.025g, the initial concentration of MB was 3.51 mg L−1, pH was 4.50 and irradiation time was 75 min.Under the optimum conditions, the photocatalytic MB degradation percentage at the desirability function value of 1.0 was found to be 70%. In addition, the obtained R2 value of 0.97 in the regression analysis showed a high photocatalytic efficiency of the proposed method for MB degradation. پرونده مقاله
      • دسترسی آزاد مقاله

        8 - Photo Degradation of methylene blue in aqueous solution by a new Cu(II)-MOF based on diaminodiphenyl sulfone ligand through response surface methodology (RSM)
        Zahra Moseni nik Saeed Jamehbozorgi Majid Ramezani Tahere Momeni Esfahani
        A novel metal–organic framework (MOF), with the formula [Cu(II)L]n (L=4, 4′-diamino diphenyl sulfone), has been synthesized conventionally andhydrothermally methods and characterized by FT-IR, PXRD, EDX, and SEMtechniques. The results MOFs were applied for p چکیده کامل
        A novel metal–organic framework (MOF), with the formula [Cu(II)L]n (L=4, 4′-diamino diphenyl sulfone), has been synthesized conventionally andhydrothermally methods and characterized by FT-IR, PXRD, EDX, and SEMtechniques. The results MOFs were applied for photodegradation of MethyleneBlue (MB). The influence of affecting variables, such as initial MB dyeconcentration (2–8mg L−1), Cu(II)-MOF mass (0.01–0.03 mg), pH (3.0–9.0), andtime of irradiation (30–90 min). The photocatalytic degradation efficiency wasinvestigated by the central composite design (CCD) methodology. The resultsof CCD analysis for optimum values of variables revealed that Cu(II)-MOF masswas 0.025g, the initial concentration of MB was 3.51 mg L−1, pH was 4.50 andirradiation time was 75 min.Under the optimum conditions, the photocatalytic MBdegradation percentage at the desirability function value of 1.0 was found to be70%. In addition, the obtained R2 value of 0.97 in the regression analysis showeda high photocatalytic efficiency of the proposed method for MB degradation. پرونده مقاله
      • دسترسی آزاد مقاله

        9 - An experimental analysis and optimization of machining rate and surface characteristics in WEDM of Monel-400 using RSM and desirability approach
        Vinod Kumar Vikas Kumar Kamal Kumar Jangra
        In the present work, an experimental investigation on wire electrical discharge machining (WEDM) of Monel-400 has been presented. Monel-400 is a nickel–copper-based alloy, mostly employed in ships and corrosion-resisting applications. Four input WEDM parameters na چکیده کامل
        In the present work, an experimental investigation on wire electrical discharge machining (WEDM) of Monel-400 has been presented. Monel-400 is a nickel–copper-based alloy, mostly employed in ships and corrosion-resisting applications. Four input WEDM parameters namely discharge current (Ip), pulse-on time (Ton), pulse-off time (Toff) and servo voltage (SV) have been investigated and modeled for two performance characteristics namely machining rate (MR) and surface roughness (SR). Effect of WEDM parameters has been discussed using response surface graphs. Using analysis of variance, quadratic model is found significant for MR while two factors interaction (2FI) model has been suggested for SR. To optimize multi-performance characteristics, desirability function has been employed. Corresponding to highest desirability, the optimal combination of discharge parameters is Ip: 103A; Ton: 113μs; Toff: 37μs and SV: 50V. The effect of discharge energy on surface morphology has also been examined. High discharge energy increases the extent of surface damage and results in large size and overlapped craters on machined surface. Low discharge energy and high value of Toff result in minimum defects on machined surface. Trim cutting operations were performed at low discharge energy using different wire offset values. Result shows that surface finish can be improved significantly after a single trim cut irrespective of high discharge energy in rough cut. پرونده مقاله
      • دسترسی آزاد مقاله

        10 - Using Response Surface Methodology for Assessment of Heating Effect on Reduction of Aflatoxin
        Moslem Lari Najafi
        Considerable attempts have been made for the complete elimination of aflatoxins (AFs), as potent health hazards to both humans and animals, or reduction of their content in foodstuffs with increasing the knowledge and awareness of these toxins. In spite of the fact that چکیده کامل
        Considerable attempts have been made for the complete elimination of aflatoxins (AFs), as potent health hazards to both humans and animals, or reduction of their content in foodstuffs with increasing the knowledge and awareness of these toxins. In spite of the fact that the most effective intervention is considered prevention, heating has been also applied for the inactivation of AFs in contaminated foodstuffs. In the present study, the adoption of response surface methodology was evaluated for the assessment of the effect of heating on the reduction of AFs. Despite various degrees of AF decrease in the samples by treatment, a significant reduction was observed in the heated samples at a temperature of 90°C for 240 min. According to the results of the current study, a 23.70 % reduction was reported in the amount of aflatoxin B1 (AFB1). Various treatment conditions demonstrated a significant difference in AFB1 decomposition (p < 0.05). In addition, AFB1 degrading was reported to be depending on both time and temperature. After the statistical analysis of the obtained data, the third-order equation for the reduction of AFB1 is presented as follows (A: Time; B:Heating): AFB1 = 12.28 + 6.24A + 4.95B + 1.12AB - 3.11A2 + 1.55B2 پرونده مقاله