Response surface methodology analysis of the photocatalytic removal of Methylene Blue using a new Cu(II)-MOF
محورهای موضوعی : Journal of NanoanalysisZahra Mohseni nik 1 , Majid Ramezani 2 , Saeed Jamehbozorgi 3 , Tahere Momeni Esfahani 4
1 - Chemistry Department, Sciences Faculty, Arak Branch, Islamic Azad University,Arak, Iran
2 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
3 - chemistry Department, Sciences Faculty, Hamedan Branch, Islamic Azad University, Hamedan, Iran
4 - chemistry Department, Science Faculty, Arak Branch, Islamic Azad University, Arak, IRAN
کلید واژه: Methylene Blue, Photocatalyst, Response Surface Methodology (RSM), Cu(II)-MOF, Degradation pathway,
چکیده مقاله :
A novel metal–organic framework (MOF), with the formula [Cu(II)L]n (L= 4, 4′-diamino diphenyl sulfone), has been synthesized conventionally and hydrothermally methods and characterized by FT-IR, PXRD, EDX, and SEM techniques. The results MOFs were applied for photodegradation of Methylene Blue (MB). The influence of affecting variables, such as initial MB dye concentration (2–8mg L−1), Cu(II)-MOF mass (0.01–0.03 mg), pH (3.0–9.0), and time of irradiation (30–90 min). The photocatalytic degradation efficiency was investigated by the central composite design (CCD) methodology. The results of CCD analysis for optimum values of variables revealed that Cu(II)-MOF mass was 0.025g, the initial concentration of MB was 3.51 mg L−1, pH was 4.50 and irradiation time was 75 min.Under the optimum conditions, the photocatalytic MB degradation percentage at the desirability function value of 1.0 was found to be 70%. In addition, the obtained R2 value of 0.97 in the regression analysis showed a high photocatalytic efficiency of the proposed method for MB degradation.
A novel metal–organic framework (MOF), with the formula [Cu(II)L]n (L= 4, 4′-diamino diphenyl sulfone), has been synthesized conventionally and hydrothermally methods and characterized by FT-IR, PXRD, EDX, and SEM techniques. The results MOFs were applied for photodegradation of Methylene Blue (MB). The influence of affecting variables, such as initial MB dye concentration (2–8mg L−1), Cu(II)-MOF mass (0.01–0.03 mg), pH (3.0–9.0), and time of irradiation (30–90 min). The photocatalytic degradation efficiency was investigated by the central composite design (CCD) methodology. The results of CCD analysis for optimum values of variables revealed that Cu(II)-MOF mass was 0.025g, the initial concentration of MB was 3.51 mg L−1, pH was 4.50 and irradiation time was 75 min.Under the optimum conditions, the photocatalytic MB degradation percentage at the desirability function value of 1.0 was found to be 70%. In addition, the obtained R2 value of 0.97 in the regression analysis showed a high photocatalytic efficiency of the proposed method for MB degradation.
[1] K.T. Chung, J. Environ. Sci. Health C., 34, 233-261 (2016).
[2] T.M. Fonovich, Drug Chem. Toxicol., 36, 343-352 (2013).
[3] R. KabboutandS. Taha, Biodecol.Phys. Procedia, 55, 437 (2014).
[4] A.R. Khataee and M.B. Kasiri, J. Mol. Catal. A-Chem., 328, 8-26 (2010).
[5] M. Rafatullah, O. Sulaiman, R. HashimandA. Ahmad, J. Hazard. Mater., 177, 70-80 (2010).
[6] V.K. Gupta, R. Kumar, A. Nayak, T.A. Salehand M.A. Barakat, Adv. Colloid Interface Sci., 193, 24-34 (2013).
[7] M.T. Yagub, T.K. Sen, S. Afroze, , & Ang, H.M.. Adv. Colloid Interface Sci., 209, 172-184 (2014).
[8] Y.Y. Lau, Y.S. Wong, T.T. Teng, N. Morad,M. Rafatullah, and S.A. Ong, RSC Adv., 5, 34206-34215 (2015).
[9] Z. Marczenko, andM. Jarosz, Analyst., 106, 751-756 (1981).
[10] N. Saffaj, H. Loukili, S.A.Younssi, A. Albizane, M. Bouhria, M. PersinandA. Larbot, Desalination, 168, 301-306 (2004).
[11] M. Panizza, A. Barbucci, R. Ricotti, andG. Cerisola, Sep. Purif. Technol., 54, 382-387 (2007).
[12] S. KumarandA.K.Ojha, J. Alloy Compd., 644, 654-662 (2015).
[13] A.Z. Aroguz, J. Gulen andR.H. Evers, Bioresour. Technol., 99, 1503-1508 (2008).
[14] J. Zhang,K.H. Lee, L. Cui andT.S. Jeong, J. Ind. Eng. Chem., 15, 185-189 (2009).
[15] A. Houas,H.Lachheb, M.Ksibi, E.Elaloui, C. Guillard andJ.M.Herrmann,. Appl. Catal. B-Environ., 31, 145-147 (2001).
[16] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui,C. Guillard andJ.M. Herrmann, Environmental., 39, 75-90 (2002).
[17] N.P. Mohabansi, V.B. Patil andN. Yenkie,Rasayan j. chem., 4, 814-819 (2011).
[18] W.S. Kuo andP.H. Ho, Chemosphere., 45, 77-83. (2001).
[19] M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman and W.M.A.W. Daud,J. environ. manage., 198, 78-94 (2017).
[20] J. Li,Y. Ma, Z. Ye, M. Zhou, H. Wang, C. Ma, D. Wang, P. Hou and Y. Yangsheng, Appl. Cata. B: Environ., 204, 224 (2017).
[21] W. Wan, S. Yu, F. Dong, Q. Zhang and Y. Zhou, J. Mater. Chem. A., 4,7823-7829 (2016).
[22] L.Ye, X. Jiao, M. Zhou, S. Zhang, H. Yao, W. Zhao, A. Xia, H. Ade and J. Hou, Adv. Mater., 27, 6046-6054 (2015).
[23] L. Zhu, X.Q. Liu, H.L. Jiang and L.B. Sun, Chem. rev., 117, 8129-8176 (2017).
[24] S.K. Elsaidi, M.H. Mohamed, D. Banerjee and P.K. Thallapally, Coor. Chem. Rev., 358, 125-152 (2018).
[25] Q. Yang, Q. Xu and H.L. Jiang, Chem. Soc. Rev., 46, 4774-4808 (2017).
[26] F.X. Llabres, I. Xamena, A. Corma and H. Garci, J. Phys. Chem. C, 111, 80-85 (2007).
[27] C.G. Silva, L. Luz, F.X. LIabres , A. Corma and H. García, Chem. A Euro., J., 16, 11133 -11138 (2010).
[28] M. M. Siddiqui, J.T. Mague and M. S. Balakrishna., Inorg. chem., 54, 6063-6065 (2015).
[29] K. Nagaveni, G. Sivalingam, M.S.Hegde and G. Madras, Appl. Cata. B: Environ., 38, 1600-1604 (2004).
[30] W.S. Kuo, P.H. Ho, Chemosphere., 45, 77 -83 (2001).
[31] D. Wang and Z. Li, J. Catal., 342, 151-157 (2016).
[32] V. Stavila, A.A. Talin and M.D. Allendorf, Chem. Soc. Rev., 43, 5994-6010 (2014).
[33] T. Zhang and W. Lin, Chem. Soc. Rev., 43, 5982-5993 (2014).
[34] Z. Lian, K. Jiang and T. Lou, RSC Adv., 5, 82781-82788 (2015).
[35] X. He, C. Yang, D. Wang, S.E. Gilliland, D.R. Chena and W.N. Wang, J. Mater. Chem. A., 6, 932-940 (2018).
[36] X. Shi,J. Zhang, G. Cui, N. Deng, W. Wang, Q. Wang and B. Tang, Nano Res., 11, 979-987 (2018).
[37] Z.L. Wu, C.H. Wang, B. Zhao, J. Dong, F. Lu, W.H. Wang, W.C. Wang, G.J. Wu, J.Z. Cui and P. Cheng, Ange. Chem. Inter. Ed.,55, 4938 (2016).
[38] T. Song, L. Zhang, P. Zhang, J. Zeng, T. Wang, A, Ali, H. Zeng,. J. Mater. Chem. A., 5, 6013-6018 (2017).
[39] B. Li, H.M. Wen, Y. Cui, W. Zhou, G. Qian and B. Chen,. Adv. Mater., 2, 21-49(2018).
[40] Y. J.Cheng, R. Wang, Sh. Wang, X. J. Xi, L.Fang Ma, Sh. Zang, Chem. com., 69, (2018).
[41] J. Zhao, Y. Wang, J. Zhou, P. Qi, S. Li, K. Zhang, X. Feng, B. Wang and C. Hu, J. Mater. Chem. A., 4, 7174-7177 (2016).
[42] K.L. Haas and K.J. Franz, Chem. Rev., 109, 4921-4960 (2009).
[43] L.X. Hu, M. Gao, T. Wen, Y. Kang and S. Chen, Inorg. chem., 56, 6507-6511 (2017).
[44] Y.B. Huang, J. Liang, X.S. Wang and R. Cao, Chem. Soc. Rev., 46, 126-157 (2017).
[45] S.C. Cho, J.H. Rhim, Y.H. Son, S.J. Lee and S.C., Park, 42, 223-232 (2010).
[46] A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, K. Pokomeda, Bioreso. tech., 160, 150-160 (2014).
[47] D.C. Montgomery, “Design and analysis of experiments” John wiley & sons, 2017 Arizona.
[48] D. Bas, I. H. Boyacı, J. food eng., 78, 836-845 (2007).
[49] II-H. Cho, K-D. Zoh, Dye. and Pig, Else. Doi., 75, 533-543 (2007).
[50] M. I.Said, M. Lbrahim, Mater. Chem. Phys., Accepted Manuscript (2019).
[51]F. NasiriAza,,M .Ghaedi,,K. Dashtian, S. Hajati, V.Pezeshkpour, Else. Ultrason. Sonochem., 31, 383-393 (2016)
[52] M. I. Said, A. I. El-Said, Aref A.M. Aly, Asia Abou-Taleb, Ultrason. Sonochem., Accepted Manuscript (2018).
[53] R. Rani, A. Deep, B. Mizaikoff, S. Singh, Else. Vacuum., 164, 449-457 (2019).
[54] Thi, T. V. N., Luu, C. L., Hoang, T. C., Nguyen, T., Bui, T. H., Nguyen, P. H. D., & Thi, T. P. P, Adv. Nat. Sci.: Nanosci. Nanotechnol. 4,035016 (2013).
[55] N. Al-Janabi, P.Hill, L. Torrent-Murciano, A. Garforth, P. Gorgojo, F. Siperstein, X. Fan, Else.chem.Eng., 281, 669-667 (2015).
[56] lB. Sun, S. Kayal, A. Chakraborty, J. Energy., 76, 419-427 (2014).
[57] S.C. Cho, J.H. Rhim, Y.H. Son, S.J. Lee and S.C., Park, EMM., 42, 223-232 (2010).
[58] L. Chen, J. He, Q. Yuan, Y.W. Zhang, F. Wang, C.T. Au, and S.F. Yin, RSC Adv., 5, 33747-33754 (2015).
[59] D. Wojcieszak, D. Kaczmarek, J. Domaradzki and M. Mazur, Inter. J. Materials Science., 35, 725-732 (2017).
[60] A. Teimouria , N. Ghaseda , Sh, Ghanavati Nasabb , S. Habibollahi, Desalination and Water Treatment.,139, 327-341(2018)
[61] M.I. Said, A.I. El-Said, A.A.M. Aly, A. Abou-Taleb, Ultrason. Sonochem., 46, 68-78 (2018).
[62] S.E.H. Etaiw, D.I. Saleh, Acta, Part A., 117 , 54-60 (2014).
[63] A.M.A. Ibrahim, S.M.A. Al-Ashqar, Spectrochim. Acta, Part A, 92, 238-244 (2012).
[64] L.-P. Zhang, Z. Liu, Y. Faraj, Y. Zhao, R. Zhuang, R. Xie, X.-J. Ju, W. Wang, L.-Y. Chu,
J. Membr. Sci., 573, 493-503 (2019).
[65] L.-L. Shi, T.-R. Zheng, M. Li, L.-L. Qian, B.-L. Li, H.-Y. Li, RSC Adv., 7, 23432-23443 (2017).
[66] S. Zhao, T.-R. Zheng, L.-L. Shi, K. Li, B.-L. Li, H.-Y. Li, J. Mol. Struct., 1143, 146-152 (2017).
[67] S. Zhao, Y.-Q. Zhang, T.-R. Zheng, L.-L. Shi, B.-L. Li, Y. Zhang, Inorg. Chem. Commun., 73, 134-137 (2016).
[68] H. Lv, H. Zhao, T. Cao, L. Qian, Y. Wang, G. Zhao, J. Mol. Catal. A: Chem., 400, 81-89 (2015).
[69] X. Bao, Z. Qin, T. Zhou, J. Deng,
J. Environ. Sci., 65, 236-245 (2018).
[70] S. Zinatloo-Ajabshir, Z. Zinatloo-Ajabshir, M. Salavati-Niasari, S. Bagheri, S.B.A. Hamid, J. Energ. Chem., 26,315-323 (2017).