• فهرست مقالات Elastic buckling

      • دسترسی آزاد مقاله

        1 - On Static Bending, Elastic Buckling and Free Vibration Analysis of Symmetric Functionally Graded Sandwich Beams
        A.S Sayyad P.V Avhad
        This article presents Navier type closed-form solutions for static bending, elastic buckling and free vibration analysis of symmetric functionally graded (FG) sandwich beams using a hyperbolic shear deformation theory. The beam has FG skins and isotropic core. Material چکیده کامل
        This article presents Navier type closed-form solutions for static bending, elastic buckling and free vibration analysis of symmetric functionally graded (FG) sandwich beams using a hyperbolic shear deformation theory. The beam has FG skins and isotropic core. Material properties of FG skins are varied through the thickness according to the power law distribution. The present theory accounts for a hyperbolic distribution of axial displacement whereas transverse displacement is constant through the thickness i.e effects of thickness stretching are neglected. The present theory gives hyperbolic cosine distribution of transverse shear stress through the thickness of the beam and satisfies zero traction boundary conditions on the top and bottom surfaces of the beam. The equations of the motion are obtained by using the Hamilton’s principle. Closed-form solutions for static, buckling and vibration analysis of simply supported FG sandwich beams are obtained using Navier’s solution technique. The non-dimensional numerical results are obtained for various power law index and skin-core-skin thickness ratios. The present results are compared with previously published results and found in excellent agreement. پرونده مقاله
      • دسترسی آزاد مقاله

        2 - Non-Local Thermo-Elastic Buckling Analysis of Multi-Layer Annular/Circular Nano-Plates Based on First and Third Order Shear Deformation Theories Using DQ Method
        Sh Dastjerdi M Jabbarzadeh
        In present study, thermo-elastic buckling analysis of multi-layer orthotropic annular/circular graphene sheets is investigated based on Eringen’s theory. The moderately thick and also thick nano-plates are considered. Using the non-local first and third order shea چکیده کامل
        In present study, thermo-elastic buckling analysis of multi-layer orthotropic annular/circular graphene sheets is investigated based on Eringen’s theory. The moderately thick and also thick nano-plates are considered. Using the non-local first and third order shear deformation theories, the governing equations are derived. The van der Waals interaction between the layers is simulated for multi-layer sheets. The stability governing equations are obtained according to the adjacent equilibrium estate method. The constitutive equations are solved by applying the differential quadrature method (DQM). Applying the differential quadrature method, the ordinary differential equations are transformed to algebraic equations. Then, the critical temperature is obtained. Since there is not any research in thermo-elastic buckling analysis of multi-layer graphene sheets, the results are validated with available single layer articles. The effects of non-local parameter, the values of van der Waals interaction between the layers, third to first order shear deformation theory analyses, non-local to local analyses, different values of Winkler and Pasternak elastic foundation and analysis of bi-layer and triple layer sheets are investigated. It is concluded that the critical temperature increases and tends to a constant value along the rise of van der Waals interaction between the layers. پرونده مقاله
      • دسترسی آزاد مقاله

        3 - Analysis of Bending and Buckling of Circular Porous Plate Using First-Order Shear Deformation Theory
        A.R. Yadegari Naeini Yadegari Naeini A. Ghasemi
        Porous materials are lightweight, flexible and resistant to hairline cracks, so today with the development of technology porous structure produced for use in various industries. This structure widely use in beams, plates and shells. The purpose of this paper is to inves چکیده کامل
        Porous materials are lightweight, flexible and resistant to hairline cracks, so today with the development of technology porous structure produced for use in various industries. This structure widely use in beams, plates and shells. The purpose of this paper is to investigate the effect of porosity in axial symmetry in bending and buckling load sheet for analysis. For this purpose, a circular plate with simply supported edges under uniform radial pressure and vertical pressure distribution is investigated. Mechanical properties of porous sheet are isotropic and variable in thickness direction is considered. Right movement is extended in accordance with the first order shear deformation theory. Then, using the principle of virtual work and applying the calculus of variations, differential equations, and equations for bending sheet stability are achieved, continue using these equations and Galerkin method, bending and buckling of the sheet is calculated. Buckling load is calculated for all types of porosity can be observed with increasing porosity, critical buckling load decreases. Buckling load is calculated for all types of porosity can be observed with increasing porosity, critical buckling load decreases. The distribution of bending stress and deflection analysis sheet was obtained. To verify the results of bending and buckling of the sheet, the results were compared with homogeneous sheet with classical theory. پرونده مقاله