• فهرست مقالات Anode materials

      • دسترسی آزاد مقاله

        1 - Effects of Active Material Particles Size Distribution on the Fabrication of TiNb2O7 Electrode Used in Lithium-Ion Batteries
        Touraj Adhami Reza Ebrahimi-Kahrizsangi Hamid Reza Bakhsheshi Rad Somayeh Majidi Milad Ghorbanzadeh
        In this study effect of active material particle size distribution (PSD) on TiNb2O7 electrodes and their performance were evaluated. To determine the effect of PSD, have focused on the performance of the electrode, which is mainly affected by the performance of individu چکیده کامل
        In this study effect of active material particle size distribution (PSD) on TiNb2O7 electrodes and their performance were evaluated. To determine the effect of PSD, have focused on the performance of the electrode, which is mainly affected by the performance of individual particles and their interaction. For this purpose, TiNb2O7 was successfully synthesized by mechanochemical method and post-annealing, as an anode material for lithium-ion batteries. Phase identifications and microstructure characterization was carried out by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) to identify the phases and evaluate the morphology of the synthesized samples. The charging and discharging tests were conducted using a battery-analyzing device for evaluating the electrochemical properties of the fabricated anodes. Eventually, at faster charging rates, the electrochemical performance was found to be improved when smaller active material particle size distribution was used. Differences in particles size distributions resulted in variable discharge capacities so that the sample with particle size higher than 25 microns (>25 μm) showed a capacity of 19 mAh/g after 179 cycles, which had a lower capacity than their sample with particle size less than 25 microns (<25 μm). The final capacity of the sample with a particle size less than 25 microns is 72 mAh/g. پرونده مقاله
      • دسترسی آزاد مقاله

        2 - None-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review
        Abudukeremu Kadier Washington Logroño Pankaj Kumar Rai Mohd Sahaid Kalil Azah Mohamed Hassimi Abu Hasan Aidil Abdul Hamid
        Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater. Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficien چکیده کامل
        Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater. Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employing a low-cost, stable and high efficient cathode to replace platinum catalyzed cathode (Pt/C) is the greatest challenge for large-scale industrialization of MEC. Numerous studies have demonstrated that the performance of MEC directly depends on the kinetics of the anode and cathode reactions within the electrolysis cell, with the performance of the electrode catalyst highly affected by the materials they are made from. In a relatively short space of time, a wide range of electrode materials have been tested to amplify the performance of MECs, such as carbon-based electrode catalysts have emerged as promising electrode materials for both anode and cathode construction. Composite materials have also shown to have the potential to become materials of choice for electro-catalyst manufacture. More recently, various transition metal oxides and alloys have been extensively examined as alternatives to conventional expensive noble-metals like platinum for hydrogen evaluation reaction (HER) in MECs. Numerous studies have confirmed that stainless steel, Ni alloys, and Pd nanoparticle decorated cathode are worth mentioning and have very good efficiency. In the present article, we present a comprehensive review centered on the development of a low-cost and high efficient electrode materials and membrane to boost the performance of MECs, including anode, cathode, and membrane. پرونده مقاله