• فهرست مقالات روش شبکه بولتزمن

      • دسترسی آزاد مقاله

        1 - بررسی تأثیر میدان مغناطیسی، تغییرات شیب و شرط مرزی دمایی دیواره بر انتقال حرارت جابجایی طبیعی آب درون محفظه‌ی مانع دار
        محمد نعمتی محمد سفید احمدرضا رحمتی
        در کار حاضر، اثر میدان مغناطیسی بر انتقال حرارت جابجایی طبیعی با استفاده از روش شبکه بولتزمن شبیه‌سازی شده است. دیواره‌ عمودی سمت چپ محفظه در دمای ثابت گرم و دیواره عمودی سمت راست محفظه دارای سه شرط مرزی دمایی مختلف (۱- دمای ثابت سرد، ۲- دمای خطی و ۳-دمای ثابت گرم) است. چکیده کامل
        در کار حاضر، اثر میدان مغناطیسی بر انتقال حرارت جابجایی طبیعی با استفاده از روش شبکه بولتزمن شبیه‌سازی شده است. دیواره‌ عمودی سمت چپ محفظه در دمای ثابت گرم و دیواره عمودی سمت راست محفظه دارای سه شرط مرزی دمایی مختلف (۱- دمای ثابت سرد، ۲- دمای خطی و ۳-دمای ثابت گرم) است. دو دیواره دیگر محفظه در دمای ثابت سرد قرار دارند. مانعی لوزی شکل که در مرکز محفظه قرار دارد در چهار حالت مختلف (۱- سرد، ۲- رسانا، ۳- آدیاباتیک و ۴- گرم) بررسی می‌شود. همچنین دیواره پایینی محفظه در سه شیب متفاوت مورد ارزیابی قرار می‌گیرد. تأثیر پارامترهای عدد رایلی، عدد هارتمن، شیب دیواره، شرط مرزی دمایی مختلف دیواره و مانع لوزی شکل، بر روی انتقال حرارت جابجایی طبیعی بررسی شده است. نتایج نشان می‌دهد با ثابت ماندن تمامی پارامترها، افزایش شیب دیواره و عدد رایلی منجر به افزایش انتقال حرارت می‌شود. با تغییر شرایط مرزی دمایی دیواره‌ها و مانع می‌توان بر روی میزان انتقال حرارت تأثیرگذار بود. بعلاوه افزایش قدرت میدان مغناطیسی سبب کاهش عدد ناسلت متوسط می‌شود که این تأثیر در شرایط مختلف، متفاوت است. پرونده مقاله
      • دسترسی آزاد مقاله

        2 - تحلیل انتقال حرارت درون محفظه با هندسه مختلف حاوی نانوسیال در حضور میدان مغناطیسی با وجود تولید/جذب حرارت به روش شبکه بولتزمن
        محمد نعمتی رامین جهانگیری مرتضی خلیلیان
        در کار حاضر اثر میدان مغناطیسی بر انتقال حرارت جابجایی طبیعی نانوسیال آب-مس با لحاظ اثر حرکت براونی نانوذرات با تولید/جذب حرارت در محفظه با هندسه‌های مختلف به روش شبکه بولتزمن برسی شده است. دیواره عمودی سمت چپ محفظه در دو حالت گرمایش دما ثابت و گرمایش بصورت دما خطی و دی چکیده کامل
        در کار حاضر اثر میدان مغناطیسی بر انتقال حرارت جابجایی طبیعی نانوسیال آب-مس با لحاظ اثر حرکت براونی نانوذرات با تولید/جذب حرارت در محفظه با هندسه‌های مختلف به روش شبکه بولتزمن برسی شده است. دیواره عمودی سمت چپ محفظه در دو حالت گرمایش دما ثابت و گرمایش بصورت دما خطی و دیواره سرد محفظه در سه شکل مختلف (الف) مورب، (ب) منحنی و (ج) صاف بررسی شده است. تأثیر پارامترهایی از قبیل عدد هارتمن، کسر حجمی نانوذرات، ضریب تولید/جذب حرارت، شکل دیواره سرد و نوع گرمایش دیواره بر ماهیت جریان و انتقال حرارت ارزیابی شده است. نتایج نشان می‌دهد در تمامی حالات، افزایش قدرت میدان مغناطیسی و ضریب تولید/جذب حرارت سبب کاهش عدد ناسلت متوسط می‌شود که اثر عدد هارتمن در حالات مختلف، متفاوت است. بیشترین میزان انتقال حرارت مربوط به حالتی است که گرمایش دما ثابت وجود داشته باشد. اثر میدان مغناطیسی زمانی که دیواره سرد به شکل صاف است، بیشتر از حالات دیگر است. اثر افزودن نانوذرات به سیال پایه در کاهش و یا افزاییش عدد ناسلت متوسط به مقدار عدد هارتمن و ضریب تولید/جذب حرارت وابسته است. پرونده مقاله
      • دسترسی آزاد مقاله

        3 - Numerical simulation of mixed convection heat transfer of nanofluid in an inclined enclosure by applying LBM
        ارش کریم پور
        Mixed convection of Cu-Water nanofluid is studied numerically in a shallow inclined enclosure by applying lattice Boltzmann method. The D2Q9 lattice and internal energy distribution function based on the BGK collision operator are used in order to develop the thermal fl چکیده کامل
        Mixed convection of Cu-Water nanofluid is studied numerically in a shallow inclined enclosure by applying lattice Boltzmann method. The D2Q9 lattice and internal energy distribution function based on the BGK collision operator are used in order to develop the thermal flow field. The enclosure's hot lid has the constant velocity of U0 while its cold lower wall has no motion. Moreover, sidewalls are taken in to account as adiabatic ones. At 3 modes of convection heat transfer (free convection, force convection and mixed convection), the effects of volume fraction and inclination angle of enclosure are studied for different values of Reynolds number as equal to 10 and 100. Comparison of achieved results as like the streamlines, isotherms and profiles of velocity and temperature versus pervious available ones, implies the appropriate agreement. It is seen that more amount of volume fraction and enclosure inclination angle at the state of free convection would correspond to higher Nusselt number. The incomes of present work show the suitable performance of lattice Boltzmann method in order to simulate the nanofluid mixed convection in an inclined enclosure. پرونده مقاله