مدلسازی نیتروژن خاک با استفاده از سنجش از دور و مدلهای رگرسیون و جنگل تصادفی
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریمحبوبه صادقی 1 , مژگان احمدی ندوشن 2
1 - دانشجوی کارشناس ارشد آلودگی، گروه محیطزیست، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.
2 - استادیار، گروه محیطزیست، مرکز تحقیقات پسماند و پساب، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.
کلید واژه: مدلسازی, تصویر ماهوارهای لندست-8, دادههای زمینی, شاخص طیفی,
چکیده مقاله :
زمینه و هدف: خاک از منابع طبیعی هر کشور است که در حفظ محیط و تولید غذا نقش مهمی دارد. افزایش و کاهش مقدار نیتروژن کل خاک در اثر شیوههای مختلف کشاورزی، ورود پساب صنعتی به آب و عوامل دیگر، منجر به آلودگی میکروبی خاک، کاهش پوشش گیاهی و نقصان در محصولات کشاورزی مورد نیاز انسان میشود. نقشهبرداری پراکنش مواد مغذی خاک به تصمیمگیریهای مدیران کمک میکند. از آنجا که تحلیل آزمایشگاهی این متغیرها، وقتگیر و در مقیاسهای وسیع هزینهبر است، تلاشهایی برای مطالعه نیتروژن خاک با استفاده از سنجشازدور انجام گرفته است. مطالعه حاضر به بررسی روش سنجش از دور و مدلهای رگرسیون و جنگل تصادفی در پیشبینی نیتروژن کل خاک در شرق شهرستان لنجان پرداخته است.روش پژوهش: نقاط مرجع نیتروژن 50 نمونه خاک از لایه 0-20 سانتیمتری خاک سطحی بود که از منطقه موردمطالعه به روش تصادفی نمونهبرداری شد. نیتروژن نمونهها پس از خشک شدن در دمای 25 درجه، عبور از مش 2 و انتقال به آزمایشگاه، بهمنظور مقایسه نتایج نهایی بهدستآمده، حاصل از ارزیابی زمینی و سنجش از دور، به روش کلدال اندازهگیری شد. تصویر ماهوارهای سال 2019 با تصحیح هندسی و رادیومتریک از باندهای طیفی 2 تا 7 سنجندهی OLI لندست ۸ (ردیف و گذر ۱۶۴ و ۳۷) آبان 1398 تهیه شد. پوشش ابر برای تصاویر تهیه شده کمتر از 10٪ در نظر گرفته شد. برای کاهش اثر پراکندگی اتمسفر بر کیفیت این تصاویر، تصحیح تابش و تصحیح اتمسفر با استفاده از مدل فلش انجام شد. شاخصهای ماهوارهای شامل DVI، NDVI، EVI، MSAVI، SAVI، RVI، NDWI، SI1، SI2، SI3 و SBI از تصویر ماهوارهایی استخراج شد و به همراه سه شاخص توپوگرافی شامل ارتفاع، شیب و شاخص رطوبت توپوگرافی (TWI) به مدل رگرسیون خطی چندگانه و جنگل تصادفی معرفی شد.یافتهها: نقشه رقومی ارتفاعی منطقه مقادیری بین ۱۱۰۰ تا ۲۰۵۰ متر را در بر گرفت. شیب منطقه، در محدوده های با شیب کم و پایین تر از هشت درصد قرار دارد. مقادیر عددی شاخص TWI در نزدیکی مجاری آبی 77/0 به دست آمد. مقادیر شاخص DVI و EVI با افزایش پوشش گیاهی افزایش داشت. شاخص NDVI مقادیر بالاتر از 3/0 و شاخص NDWI بهعنوان یک شاخص آبی، مقدار حداکثری 77/0 را در مناطق غرقاب نشان داد. شاخص SAVI تفکیکپذیری بالایی از نواحی بدون پوشش تا پوشش تنک و نواحی با پوشش گیاهی قوی را ارائه داد. شاخص SBI و شاخص های سهگانه شوری SI تغییرپذیری بسیار بالایی از جنبه پارامتر های خاک در نواحی بدون پوشش نشان داد. مدل رگرسیون نیتروژن خاک با سه شاخص RVI، DVI و TWI با مقدار معناداری آماری (p-value) برابر با ۰۴/۰ تولید شد. در مدل جنگل تصادفی، شاخصهای گیاهی و خاک نقش تعیینکنندهای در ساخت مدل داشتند و مقدار ضریب تعیین ((R2 برابر با ۴۴/۰ به دست آمد.نتایج: نیتروژن کل خاک نیز در پارامترهای خاک با چگالی و با شن و رس از بافت خاک و در پارامترهای توپوگرافی با ارتفاع و در شاخصهای طیفی با ,EVI RVI, SAVI, NDWI,NDVI و DVI در سطح 01/0 و با SI3 از شاخصهای شوری در سطح 05/0 همبستگی دارد. در پارامترهای خاک نیز سیلت با شن و رس در سطح 05/0 و شن با رس همچنین چگالی با رس در سطح 01/0 همبستگی دارند. نتایج نشان داد که وضعیت توپوگرافی منطقه به همراه شاخصهای بر پایه مادون قرمز نزدیک و قرمز نقش بسزایی در پیشبینی نیتروژن دارد. همچنین مقایسه نتایج حاصل از ارزیابی زمینی و سنجش از دور نشان داد که در پیشبینی نیتروژن کل خاک، اختلاف معنیداری بین دو مدل و ارزیابی میدانی وجود ندارد و هر دو مدل نتایج نزدیکی به ارزیابی میدانی داشتند.
Background and Aim: Soil is one of the important natural resources of any country, which plays an important role in preserving the environment and producing food. Increasing and decreasing the amount of total soil nitrogen due to various agricultural methods, the entry of industrial wastewater into water and other factors, leads to microbial contamination of soil, reduced vegetation and deficiency in agricultural products needed by humans. Mapping soil nutrient distribution helps mangers in decisions. Since laboratory analysis of these parameters is time consuming and costly across large scales, attempts have been made in recent years to study soil nitrogen based on remote sensing techniques. In this regard, the present study investigated the applicability of remote sensing predicting soil total nitrogen in the east of Lenjan city.Method: Nitrogen reference points were identified by analyzing 50 randomly-selected surface soil samples from 0-20 cm depth. Nitrogen of soil samples was measured by Kjeldahl method after drying soil at 25 ° C, passing through a 2 mm mesh sieve and transferring to the laboratory, to compare the final results obtained from field sampling and remote sensing technology. Landsat 8 OLI Satellite Image of 2019 (Path 164/Row 37) was obtained and geometric and radiometric correction were applied. Cloud cover for image provided was less than 10%. To reduce the effect of atmospheric diffusion on the quality of image, radiation and atmospheric correction were performed using the FLASH model. the Landsat-8 satellite image (rows 164 and 37) taken on 15 Sep. 2019 and along with three topographic indices of elevation, slope and topographic wetness index (TWI) were introduced to the multiple linear regression and random forest models. Results: The digital elevation map of the area showed elevation values between 1100 and 2050 meters. The slope of the study area was less than eight percent. Numerical values of TWI index near water bodies were found to be 0.77. DVI and EVI index values increased with increasing vegetation cover. NDVI index showed values higher than 0.3 and NDWI index as a water index showed a maximum value of 0.77. The SAVI index showed high differences from areas without cover to sparse cover and areas with strong vegetation. SBI index and SI salinity indices showed very high variability in terms of soil parameters in barren lands. Nitrogen regression model was built using three indices RVI, DVI and TWI with p-values of 0.049 and 0.00, respectively. In the nitrogen random forest model, however, plant and soil indices played a more important role in model construction with an of r2 value of 0.44.Conclusion: Total soil nitrogen in soil parameters showed correlation with density and sand and clay from soil texture and in topographic parameters with elevation and spectral indices with EVI RVI, SAVI, NDWI, NDVI and DVI at the level of 0.01 and with SI3 of salinity indices at the 0.05 level. In soil parameters, silt is correlated with sand and clay at the level of 0.05 and sand with clay as well as density with clay are correlated at the level of 0.01. The results of this study showed that the topographic condition of the region along with red and near infrared-based indices had a significant role in predicting soil total nitrogen. Results also showed a slight difference was observed between the two models in predicting soil nitrogen.
References:
Abbasi, Y., Mirzaei, F., and Sohrabi, T. (2018). Distribution of heavy metals Pb, Cu and Ni in irrigated fields by wastewater of Tehran city, Iran, using Sentinel2 image. Water and Irrigation Management, 8(1): 113-129. [in Persian]
Alexakis, D.I., Daliakopoulos, I., and Tsanis, P. (2018). Assessing soil salinity using WorldView-2 multispectral images in Timpaki, Crete, Greece. Geocarto International, 33(4): 321-338.
Amini Khoei, Z., Abdollahpouri, A. (2017). Classification of network traffic using enhanced random forest algorithm. Computing Science Journal, 16: 2-17. [in Persian]
Asfaw, E.K., Suryabhagavan, M., and Argaw, M. (2018). Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 17(3): 250-258.
Aslani, A. (2012). Analysis and study of severe glaciations in Zayandehrood basin. Master thesis, Faculty of Geography, Yazd University, Faculty of Geography, 8: 2-24. [in Persian]
Belgiu, M., Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114: 24-31.
Bremmer, J.M. and Mulvancey, C.S. (1982). Total nitrogen. In: Page AL, Miller RH and Keeney DR, (eds.). Method of Soil Analysis. Part II. Aragon Monogr, 9, Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. 599-622.
Camera, C., Zomeni, Z., Noller, J.S., Zissimos, A., Christoforou, I.C., and Bruggeman, A. (2017). A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma, 285: 35-49.
Dayani, M., Naderi, M., Mohammadi, J. (2010). Mapping Concentrations of Pb, Zn and Cd in Soils Using Landsat ETM+ Data in Southern Isfahan. Journal of Water and Soil, 24(2): 286-296. [in Persian]
DengWei, W., YunZhao, W. and HongRui, M.A. (2009). Review on remote sensing monitoring on contaminated plant. Remote Sens. Technol. Appl., 2:238–245.
Desavathu, R.N., Nadipena, A.R., Peddada, J.R. (2018). Assessment of soil fertility status in Paderu Mandal, Visakhapatnam district of Andhra Pradesh through Geospatial techniques. The Egyptian Journal of Remote Sensing and Space Science, 21(1): 73-81.
Elhag, M. and Bahrawi, J. (2017). Soil salinity mapping and hydrological drought indices assessment in arid environments based on remote sensing techniques. Geoscientific Instrumentation, Methods and Data Systems, 6(1): 149-158.
Elharti, A., Lhissou, R., Chokmani, K., Ouzemou, J., Hassouna, M., Bachaoui, E.M. and El Ghmari, A. (2016). Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices. International Journal of Applied Earth Observation and Geoinformation, 50: 64-73.
Fathizad, M., Ardakani, H., Sodaiezadeh R., Kerry, R., and Taghizadeh-Mehrjardi, R. (2020). Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran. Geoderma, 365: https://doi.org/10.1016/j.geoderma.2020.114233.
Hanusz, Z., Tarasinska, J., and Zielinski, W. (2016). Shapiro-Wilk test with known mean. REVSTAT-Statistical Journal, 14: 89-100.
Hengl, T., Heuvelink, G.B., Kempen, B., Leenaars, J.G., Walsh, M.G., Shepherd, K.D. and Tamene, L. (2015). Mapping soil properties of Africa at 250 m resolution, Random forests significantly improve current predictions. PloS one, 10(6): 1-26.
Islam, T., and Toor, E. (2019). Power Comparison of Autocorrelation Tests in Dynamic Models. International Econometric Review, Econometric Research Association, 11(2): 58-69.
Jiang, Y., Rao, L., Sun, K., Han, Y., and Guo, X. (2018). Spatio-temporal distribution of soil nitrogen in Poyang lake ecological economic zone (South-China). Science of the Total Environment, 626: 235-243.
Khan, S. and Abbas, A. (2007). Using remote sensing techniques for appraisal of irrigated soil salinity. Int. Congr. Model. Simul.-MODSIM, Model. Simul. Soc. Aust. New Zealand, Bright-January, 2632-2638.
Kisi, O., Karahan, M., and Sen, Z. (2006). River suspended sediment modeling using fuzzy logic approach. Hydrol Process, 20(2): 4351-4362.
Lucà, F., Conforti, M., and Robustelli, G. (2011). Comparison of GISbased gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology, 134 : 297–308.
Mirchooli, F., Kiani-Harchegani, M., Khaledi Darvishan, A., Falahatkar, S., and Sadeghi, H. (2020). Spatial distribution dependency of soil organic carbon content to important environmental variables. Ecological Indicators, 116: 1-10.
Mohammadi, A., Majnoon Hoseini, N., Moghadam, H., Oveisi, M. (2020). Alfalfa yield prediction by some vegetative indices and environmental variables in Southern Khorasan:Case study of Sarayan. Iranian Journal of field crop science, 51(1): 137-148. [in Persian]
Nitze, I., Schulthess, U., Asche, H. (2012). Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification. Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 79: 35-40.
Norouzi, E., Bahramifar, N., Ghasempouri, M. (2010). Determination Concentration of Lead in Breast in Lactating Women in Region Industrial Zarinshahr and Effect on Infant. Journal of Isfahan Medical School, 28(112): 640-646. [in Persian]
Peng, J., Biswas, A., Jiang, Q., Zhao, R., Hu, J., Hu, B. and Shi, Z. (2019). Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma, 337: 1309-1319.
Periasamy, S. and Shanmugam, R.S. (2017). Multispectral and microwave remote sensing models to survey soil moisture and salinity. Land Degradation & Development, 28(4): 1412-1425.
Rahmati, M. and Hamzehpour, N. (2017). Quantitative remote sensing of soil electrical conductivity using ETM+ and ground measured data. International Journal of Remote Sensing, 38(1): 123-140.
Robinson, W., Allred, M., Jones, A., Moreno, J.S., Kimball, D.E., Naugle, T.A., and Richardson, E. (2017). A dynamic Landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote Sensing, 9(8): 863.
Santos Silva, F., dos Santos Verçosa, J., and Falcão Tavares, A. (2020). Evaluating methods to classify sugarcane planting using convolutional neural network and random forest algorithms. International Journal of DevelopmentResearch, 10(12): 42807-42811.
Sidike, A., Zhao, S. and Wen, Y. (2014). Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra. International Journal of Applied Earth Observation and Geoinformation, 26: 156-175.
Sulistyo, B.T., Gunawan, P., Danoedoro, N. and Listyaningrum, N. (2017). Absolute Accuracy of the Erosion Model of DEM-NDVI and its Modification. International Journal of Geoinformatics, 13(2): 13-20.
Tafazoli, M., Jalilvand, H., Hojjati, S., Lamersdorf, N. (2017). The effect of simulated nitrogen deposition on soil chemical properties in maple plantation stand. Environmental Sciences, 15(2): 39-54. [in Persian]
Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., and Malone, B. (2014). Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213: 15-28.
Wang, C., Wang, S. Fu, B., Li, Z., Wu, X., and Tang, Q. (2017). Precipitation gradient determines the tradeoff between soil moisture and soil organic carbon, total nitrogen, and species richness in the Loess Plateau, China. Science of the Total Environment, 575: 1538-1545.
Xu, Y., Smith, S.E., Grunwald, S. Abd-Elrahman, A., Wani, S.P. and Nair, V.D. (2018). Estimating soil total nitrogen in smallholder farm settings using remote sensing spectral indices and regression kriging. Catena, 163: 111-122.
Zhang, Y., Sui, B., Shen, H., and Ouyang, L. (2019). Mapping stocks of soil total nitrogen using remote sensing data, A comparison of random forest models with different predictors. Computers and Electronics in Agriculture, 160: 23-30.
Zhang, W.J., Li, X.K., Chen, F., and Liu, J.W. (2012). Accumulation and distribution characteristics for nitrogen, phosphorus and potassium in different cultivars of Petunia hybrida Vlim. Sci Hortic, 141: 83–90.
Zhou, T., Geng, Y., Chen, J., Liu, M., Haase, D., and Lausch, A. (2020). Mapping soil organic
carbon content using multi-source remote sensing variables in the Heihe River Basin
in China. Ecol. Indic., 114, 106288. https://doi.org/10.1016/j.ecolind.2020.106288.