Study on the effect of climate change on maximum precipitations and probable maximum flood in the Karoon River zone of Iran
Subject Areas : Irrigation and Drainageزهرا رامک 1 , جهانگیر پرهمت 2 , ابراهیم فتاحی 3 , مهران زند 4 , حسین صدقی 5
1 - دکتری مهندسی منابع آب، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، تهران، ایران.
2 - پژوهشکده حفاظت خاک و آبخیزداری.
3 - پژوهشکده هواشناسی.
4 - عضو هیئت علمی سازمان تحقیقات کشاورزی.
5 - گروه علوم و مهندسی آب، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران.
Keywords: Climate Change, تغییراقلیم, HEC-HMS, SRM, extreme precipitation, maximum probable flood, بارشهای حدی, حداکثر سیلاب محتمل, مدلHEC-HMS و مدل SRM,
Abstract :
Climate change is one of the challenges which affect different areas of the human’s life on the earth, one of which is its effect on extreme events such as flood and drought. Today, one of the most important topics being discussed is that how the intensity of heavy precipitations and flood will change in future compared to that of the present values. In the present study, we try to investigate the effect of this phenomenon on the extreme precipitation and maximum probable flood (PMF) in the Shaloo Bridge region of the Karoon River in Iran. For such purpose, future temperature and precipitation between 2011 and 2030 is simulated with HadCM3 model based propagation scenarios of A1B, A2, B1 and small-scale exponential and statistical model LARS-WG. For simulation of the flood in the region, rainfall-runoff model HEC-HMS model is applied and for simulation of snowmelt, SRM model is considered. Results of this research shows that under the A1B scenario, in the time period from 2011 to 2030, the maximum precipitations in the region is reduced by 5 percent compared to that of the present time; on the contrary, A2 and B1 scenarios show an increase of 5 and 10 percent each. Also, it can be predicted that the flood as result of snowmelt in the climate change condition is increased in all the three scenarios. Also, the maximum probable flood at the area is decreased upon the A1B scenario, but it is increased in the A2 and B1 scenarios; however, the intensity of change is much higher in the last one.
آشفته، پ.، مساح بوانی ع. (1389). تأثیر تغییر اقلیم بر دبیهای حداکثر: مطالعه موردی، حوضه آیدوغموش، آذربایجان شرقی. علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک ، سال 14، شماره 53.
حجاری زاده ز، فتاحی الف، مساح بوانی ع، ناصرزاده م. (1391). ارزیابی اثرات تغییراقلیم بر هیدروگراف سیلاب در دورههای آتی، مطالعه موردی: حوضه آبریز بختیاری. جغرافیا (فصلنامه علمی-پژوهشی انجمن جغرافیای ایران)، سال10، شماره24.
دودانگه، الف، سلطانی س، سرحدی ع. (1390) بررسی روند مقادیر حدی جریان (جریان حداقل و سیل)در حوضه آبخیز سد سفیدرود، مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک ، سال 15، شماره 229.
مساح بوانی، ع. و مرید س. (1384). اثرات تغییر اقلیم بر جریان رودخانه زایندهرود اصفهان،علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، جلد9، شماره 28.
Barrow, E., Hulme, M. and Semenov, M. (1996). Effect of using different methods in the construction of climate change scenarios: examples from Europe. Climate Research, 7, 195-211.
Cameron,D, Beven,K. and Naden,K. (2000). Flood frequency estimation by continuous simulation under climate change (with uncertainty), journal of Hydrology and Earth System Sciences Discussions, Copernicus Publications. 4 (3), pp.393-405
Diaz-Nieto, J. and Wilby, R.L. (2005). A comparison of statistical and climate change factor methods: impacts on low flows in the river Thames, united kingdom. Jouornal of Climatic Change, 69, 245-268.
IPCC. (2007). Impacts, Adaptation, and Vulnerability (Eds. ML Parry, OF Canziani, JP Palutikof, PJ van der Linden, CE Hanson). Cambridge University Press, UK.
IPCC. (2007). Summary for Policymarkers, in: Climate Change 2007. Solomon, S.,D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1-18.
Jones, P. D. and Hulme, M. (1996). Calculating regional climatic time series for temperature and precipitation: methods and illustrations. International journal of climatology, 16, 361-377.
Kunkel, K,. Karl, T., Easterling, D., Redmond, K., Young, J., Yin, X, and Hennon, P. (2013). Probable maximum precipitation and climate change. Geophysical Research Letters, 40, pp: 1402–1408.
Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Kabat, P., Jiménez, B., Miller, K. A., Oki, T., Sen, Z., and Shiklomanov, I. A.(2007). Freshwater resources and their management, in: Climate Change: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Edited By: Parry, M. L., Canziani, O. F., Palutikof, J. P., Van Der Linden, P. J., And Hanson, C. E., Cambridge University Press, Cambridge, UK, 173–210.
Muttiah, R. S. and Wurbs, R. A. (2002). Modeling the impacts of climate change on water supply reliabilities. Water International, 27(3): p. 407-419
Semenov, M. A., and Brooks, R. J. (1998). Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research, 10: 95-107.
Schreider, S. Yu. Smith, D. I, Jakeman, A. J. (2000). Climate Change Impacts on Urban Flooding, journal of Climatic Change, 47 (1-2), pp: 91-115.
Whetton, P. H, Fowler, A. M. , Haylock, M. R, Pittock, A. B. (1993). Implications of climate change due to the enhanced greenhouse effect on floods and droughts in Australia,journal of Climatic Change, Volume 25, Issue 3-4, pp 289.