اثر محافظتی فعالیت های بدنی منظم و گیاهان دارویی بر بافت هیپوکامپ به واسطه مهار آپوپتوز
محورهای موضوعی : دسترسی آزاد
ثریا پور اصغری سیاه اسطلخی
1
*
,
سیدمترضی طیبی
2
,
Lida Moradi
3
,
رسول اسلامی
4
1 -
2 - دانشگاه علامه طباطبائی- تهران- ایران
3 - استادیار دانشگاه آزاد اسلامی تهران شمال
4 - علامه طباطبائئ
کلید واژه: فعالیت های بدنی, گیاهان دارویی, بافت هیپوکامپ, مهار آپوپتوز,
چکیده مقاله :
هدف: آپوپتوز فرایندی بسیار سازمان یافته و برنامه ریزی شده است که نقش حیاتی در نظارت بر انواع رویدادهای سلولی غیر پاتولوژیک دارد، با وجود این تأثیر فعالیت های ورزشی با شدت های مختلف بر آپوپتوز هنوز به طور کامل شناخته شده نیست. گیاهان دارویی از زمان قدیم به عنوان منبع اصلی ترکیبات ضد آپوپتوزی مورد مطالعه قرار میگرفت. بنابراین هدف مطالعه حاضر بررسی اثر محافظتی فعالیت های بدنی منظم و گیاهان دارویی بر بافت هیپوکامپ به واسطه مهار آپوپتوز بود. مواد و روش ها: به این منظور در تمامی بانک های اطلاعاتی بخصوصScience of Web ،Pubmed ، Google Octapamine،Aerobic Exercise ، Metabolic disorders های واژه کلید با Mageiran ،SID.IR ،scholar factors risk و غیره، بدون محدودیت سال جستجو انجام گرفت. سپس مقالات بر اساس تمرین و گیاهان دارویی بر نشانگرهای آپوپتوزی بر بافت هیپوکامپ دسته بندی شدند. نتایج: نتایج نشان می دهد استفاده از داروهاي گیاهی و فعالیت های بدنی می تواند بر میزان کاهش آپوپتوز بافت هیپوکامپ اثر داشته باشد. براي درمان بیماري هاي مختلف از جمله بیماري هاي عصبی و خودایمنی گسترش بسیاري یافته است. نتیجه گیری: به طور خلاصه، پژوهش حاضر نشان داد که تمرین میتواند فرایند آپوپتوز سلولی را در هیپوکامپ به منظور حفاظت عصبی در مغز تنظیم نماید. همینطور، این مطالعه از شواهدی حمایت میکند که تمرین، کاهش بیان ژن های مربوط به آپوپتوز را در مدل حیوانی بهدنبال داشته باشد. گیاهان دارویی سبب افزایش تکثیر و کاهش میزان آپوپتوز سلولهای بنیادی عصبی را افزایش داده و میزان آپوپتوز را در آنها کاهش می دهد.
Background: Apoptosis is a highly organized and programmed process that plays a vital role in monitoring a variety of non-pathological cellular events, however, the effect of exercise activities with different intensities on apoptosis is still not fully understood. Medicinal plants have been studied since ancient times as the main source of anti-apoptotic compounds. Therefore, the aim of the present study was to investigate the protective effect of regular physical activities and medicinal plants on the hippocampal tissue by inhibiting apoptosis. Materials and methods: For this purpose, in all databases, especially Science of Web, Pubmed, Google Octapamine, Aerobic Exercise, Metabolic disorders, keywords were searched with Mageiran, SID.IR, scholar risk factors, etc., without year restrictions. Then the articles were categorized based on exercise and medicinal plants on apoptotic markers on hippocampal tissue. Result: The results show that the use of herbal medicines and physical activities can have an effect on the reduction of hippocampal tissue apoptosis. It has been widely used to treat various diseases, including neurological and autoimmune diseases. Conclusion: In summary, the present study showed that exercise can regulate the process of cell apoptosis in the hippocampus for the purpose of neuroprotection in the brain. Also, this study supports the evidence that exercise reduces the expression of apoptosis-related genes in an animal model. Medicinal plants increase the proliferation and decrease the rate of apoptosis of neural stem cells and decrease the rate of apoptosis in them.
Aboutaleb, N., Shamsaei, N., Khaksari, M., Erfani, S., Rajabi, H., & Nikbakht, F. (2015). Pre-ischemic exercise reduces apoptosis in hippocampal CA3 cells after cerebral ischemia by modulation of the Bax/Bcl-2 proteins ratio and prevention of caspase-3 activation. Journal of Physiological Sciences, 65(5), 435–443. doi: 10.1007/s12576-015-0382-7
Amirsasan, R., Dolgari, R., & Vakili, J. (2019). Effects of Pilates Training and Turmeric Supplementation on Sirtuin 1 Level and Body Composition in Postmenopausal Females with Sedentary Overweight: A Randomized, Double-Blind, Clinical Trial. Zahedan Journal of Research in Medical Sciences, 21(3), 1–8. doi: 10.5812/zjrms.81620
Bastani, S., Vahedian, V., Rashidi, M., Mir, A., Mirzaei, S., Alipourfard, I., Pouremamali, F., Nejabati, H., kadkhoda, J., Maroufi, N. F., & Akbarzadeh, M. (2022). An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomedicine and Pharmacotherapy, 153(June), 113297. doi: 10.1016/j.biopha.2022.113297
Blank, M., & Shiloh, Y. (2007). Programs for cell death: Apoptosis is only one way to go. Cell Cycle, 6(6), 686–695. doi: 10.4161/cc.6.6.3990
Brain, I., & Delivery, T. (2021). Its Brain Targeted Delivery.
Bruce, C. R., Kriketos, A. D., Cooney, G. J., & Hawley, J. A. (2004). Disassociation of muscle triglyceride content and insulin sensitivity after exercise training in patients with Type 2 diabetes. Diabetologia, 47(1), 23–30. doi: 10.1007/s00125-003-1265-7
Chhatre, S., Nesari, T., Somani, G., Kanchan, D., & Sathaye, S. (2014). Phytopharmacological overview of Tribulus terrestris. Pharmacognosy Reviews, 8(15), 45–51. doi: 10.4103/0973-7847.125530
Clark, P. J., Bhattacharya, T. K., Miller, D. S., & Rhodes, J. S. (2011). Induction of C-Fos, Zif268, and Arc from acute bouts of voluntary wheel running in new and pre-existing adult mouse hippocampal granule neurons. Neuroscience, 184, 16–27. doi: 10.1016/j.neuroscience.2011.03.072
Delfani, N., Peeri, M., & Matin Homaee, H. (2021). Effect of Aerobic Exercise and Hydroalcoholic Extract of Tribulus Terrestris on Mitochondrial Oxidative Stress Markers in Heart Tissue of Rats Poisoned With Hydrogen Peroxide. Complementary Medicine Journal, 11(1), 30–43. doi: 10.32598/cmja.11.1.995.1
Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35(4), 495–516. doi: 10.1080/01926230701320337
Fesik, S. W. (2005). Promoting apoptosis as a strategy for cancer drug discovery. Nature Reviews Cancer, 5(11), 876–885. doi: 10.1038/nrc1736
Foo, J. B., Saiful Yazan, L., Tor, Y. S., Wibowo, A., Ismail, N., How, C. W., Armania, N., Loh, S. P., Ismail, I. S., Cheah, Y. K., & Abdullah, R. (2015). Induction of cell cycle arrest and apoptosis by betulinic acid-rich fraction from Dillenia suffruticosa root in MCF-7 cells involved p53/p21 and mitochondrial signalling pathway. Journal of Ethnopharmacology, 166, 270–278. doi: 10.1016/j.jep.2015.03.039
Gar, C., Rottenkolber, M., Haenelt, M., Potzel, A. L., Kern-Matschilles, S., Then, C., Seissler, J., Bidlingmaier, M., & Lechner, A. (2020). Altered metabolic and hormonal responses to moderate exercise in overweight/obesity. Metabolism: Clinical and Experimental, 107, 154219. doi: 10.1016/j.metabol.2020.154219
Ghadami, M. R., & Pourmotabbed, A. (2009). The effect of crocin on scopolamine induced spatial learning and memory deficits in rats. Physiology and Pharmacology, 12(4), 287–295.
Habibi, P., Alihemmati, A., NourAzar, A., Yousefi, H., Mortazavi, S., & Ahmadiasl, N. (2016). Expression of the Mir-133 and Bcl-2 could be affected by swimming training in the heart of ovariectomized rats. Iranian Journal of Basic Medical Sciences, 19(4), 381–387.
Hosseinzadeh, H., Modaghegh, M. H., & Saffari, Z. (2009). Crocus sativus L. (saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle. Evidence-Based Complementary and Alternative Medicine, 6(3), 343–350. doi: 10.1093/ecam/nem125
Huang, C. Y., Lin, Y. Y., Hsu, C. C., Cheng, S. M., Shyu, W. C., Ting, H., Yang, A. L., Ho, T. J., & Lee, S. Da. (2016). Antiapoptotic effect of exercise training on ovariectomized rat hearts. Journal of Applied Physiology, 121(2), 457–465. doi: 10.1152/japplphysiol.01042.2015
Itoh, J., Nabeshima, T., & Kameyama, T. (1991). Utility of an elevated plus-maze for dissociation of amnesic and behavioral effects of drugs in mice. European Journal of Pharmacology, 194(1), 71–76. doi: 10.1016/0014-2999(91)90125-A
Khatun, M., Nur, M. A., Biswas, S., Khan, M., & Amin, M. Z. (2021). Assessment of the anti-oxidant, anti-inflammatory and anti-bacterial activities of different types of turmeric (Curcuma longa) powder in Bangladesh. Journal of Agriculture and Food Research, 6, 100201. doi: 10.1016/j.jafr.2021.100201
Khodir, A. E., Said, E., Atif, H., ElKashef, H. A., & Salem, H. A. (2019). Targeting Nrf2/HO-1 signaling by crocin: Role in attenuation of AA-induced ulcerative colitis in rats. Biomedicine and Pharmacotherapy, 110(July 2018), 389–399. doi: 10.1016/j.biopha.2018.11.133
Kim, J. Y., & Shim, S. H. (2019). Medicinal herbs effective against atherosclerosis: Classification according to mechanism of action. Biomolecules and Therapeutics, 27(3), 254–264. doi: 10.4062/biomolther.2018.231
Koçtürk, S., Kayatekin, B. M., Resmi, H., Açıkgöz, O., Kaynak, C., & Özer, E. (2008). The apoptotic response to strenuous exercise of the gastrocnemius and solues muscle fibers in rats. European Journal of Applied Physiology, 102(5), 515–524. doi: 10.1007/s00421-007-0612-7
Landim Neves, M. I., Strieder, M. M., Vardanega, R., Silva, E. K., & Meireles, M. A. A. (2019). Biorefinery of turmeric (: Curcuma longa L.) using non-thermal and clean emerging technologies: An update on the curcumin recovery step. RSC Advances, 10(1), 112–121. doi: 10.1039/c9ra08265d
Li, J., Lei, H. tao, Cao, L., Mi, Y. N., Li, S., & Cao, Y. X. (2018). Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization. International Immunopharmacology, 55(September 2017), 120–127. doi: 10.1016/j.intimp.2017.11.037
Li, M., Peng, J., Wang, M. D., Song, Y. L., Mei, Y. W., & Fang, Y. (2014). Passive movement improves the learning and memory function of rats with cerebral infarction by inhibiting neuron cell apoptosis. Molecular Neurobiology, 49(1), 216–221. doi: 10.1007/s12035-013-8512-9
Liang, Y., Zheng, B., Li, J., Shi, J., Chu, L., Han, X., Chu, X., Zhang, X., & Zhang, J. (2020). Crocin ameliorates arsenic trioxide induced cardiotoxicity via Keap1-Nrf2/HO-1 pathway: Reducing oxidative stress, inflammation, and apoptosis. Biomedicine and Pharmacotherapy, 131(September), 110713. doi: 10.1016/j.biopha.2020.110713
Liebert, M. A., Song, W., Kwak, H., & Lawler, J. M. (2006). Ars.2006.8.517. 8(9).
Liu, W. Y., He, W., & Li, H. (2013). Exhaustive training increases uncoupling protein 2 expression and decreases Bcl-2/bax ratio in rat skeletal muscle. Oxidative Medicine and Cellular Longevity, 2013. doi: 10.1155/2013/780719
Ma, F., & Liu, D. (2015). 17Β-Trenbolone, an Anabolic-Androgenic Steroid As Well As an Environmental Hormone, Contributes To Neurodegeneration. Toxicology and Applied Pharmacology, 282(1), 68–76. doi: 10.1016/j.taap.2014.11.007
Mallikarjuna, K., Shanmugam, K. R., Nishanth, K., Wu, M. C., Hou, C. W., Kuo, C. H., & Reddy, K. S. (2010). Alcohol-induced deterioration in primary antioxidant and glutathione family enzymes reversed by exercise training in the liver of old rats. Alcohol, 44(6), 523–529. doi: 10.1016/j.alcohol.2010.07.004
Mason, S. A., Trewin, A. J., Parker, L., & Wadley, G. D. (2020). Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biology, 35(February), 101471. doi: 10.1016/j.redox.2020.101471
Mattson, M. P. (2000). Apoptosis in neurodegenerative disorders. Nature Reviews Molecular Cell Biology, 1(2), 120–129. doi: 10.1038/35040009
Neychev, V. K., Nikolova, E., Zhelev, N., & Mitev, V. I. (2007). Saponins from Tribulus terrestris L. are less toxic for normal human fibroblasts than for many cancer lines: Influence on apoptosis and proliferation. Experimental Biology and Medicine, 232(1), 126–133.
Nisticò, R., Mori, F., Feligioni, M., Nicoletti, F., & Centonze, D. (2014). Synaptic plasticity in multiple sclerosis and in experimental autoimmune encephalomyelitis. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1633). doi: 10.1098/rstb.2013.0162
Pahuja, M., Mehla, J., Reeta, K. H., Joshi, S., & Gupta, Y. K. (2011). Hydroalcoholic extract of Zizyphus jujuba ameliorates seizures, oxidative stress, and cognitive impairment in experimental models of epilepsy in rats. Epilepsy and Behavior, 21(4), 356–363. doi: 10.1016/j.yebeh.2011.05.013
Plastina, P., Bonofiglio, D., Vizza, D., Fazio, A., Rovito, D., Giordano, C., Barone, I., Catalano, S., & Gabriele, B. (2012). Identification of bioactive constituents of Ziziphus jujube fruit extracts exerting antiproliferative and apoptotic effects in human breast cancer cells. Journal of Ethnopharmacology, 140(2), 325–332. doi: 10.1016/j.jep.2012.01.022
Rahbardar, M. G., & Hosseinzadeh, H. (2020). Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iranian Journal of Basic Medical Sciences, 23(9), 1100–1112. doi: 10.22038/ijbms.2020.45269.10541
Samadi, M., Kordi, N., Salehpoor, S., Iravani, O. M., & Asjodi, F. (2019). Effect of one and five-day curcumin consumption on muscle damage indices after an eccentric exercise session in untrained young men. Journal of Military Medicine, 21(2), 123–130.
Sanu, U. S. (2023). Title of Article: Evaluation of the Effect of Suppression of Natural Urges (Vega-avaraodha) on Women’s Health with Special Reference to Dysmenorrhea (Udavartini): A Clinical Trial. 2(1), 2–6. Retrieved from www.airjata.org
Satoi, H., Tomimoto, H., Ohtani, R., Kitano, T., Kondo, T., Watanabe, M., Oka, N., Akiguchi, I., Furuya, S., Hirabayashi, Y., & Okazaki, T. (2005). Astroglial expression of ceramide in Alzheimer’s disease brains: A role during neuronal apoptosis. Neuroscience, 130(3), 657–666. doi: 10.1016/j.neuroscience.2004.08.056
Sekeres, M. J., Winocur, G., & Moscovitch, M. (2018). The hippocampus and related neocortical structures in memory transformation. Neuroscience Letters, 680, 39–53. doi: 10.1016/j.neulet.2018.05.006
Sheikh, R., & Nikbakht, M. (2023). Physical activity and apoptosis , a brief review of previous findings. 137–144.
Tanhuad, N., Thongsa-ad, U., Sutjarit, N., Yoosabai, P., Panvongsa, W., Wongniam, S., Suksamrarn, A., Piyachaturawat, P., Anurathapan, U., Borwornpinyo, S., Chairoungdua, A., Hongeng, S., & Bhukhai, K. (2021). Ex vivo expansion and functional activity preservation of adult hematopoietic stem cells by a diarylheptanoid from Curcuma comosa. Biomedicine and Pharmacotherapy, 143(August), 112102. doi: 10.1016/j.biopha.2021.112102
Vainshtein, A., Kazak, L., & Hood, D. A. (2011). Effects of endurance training on apoptotic susceptibility in striated muscle. Journal of Applied Physiology, 110(6), 1638–1645. doi: 10.1152/japplphysiol.00020.2011
Würstle, M. L., Laussmann, M. A., & Rehm, M. (2012). The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Experimental Cell Research, 318(11), 1213–1220. doi: 10.1016/j.yexcr.2012.02.013
Yewle, N. R., Swain, K. C., Mann, S., & Dhakre, D. S. (2021). Evaluating of hermetic bags for long-term storage of turmeric (Curcuma longa L.) rhizomes. Journal of Stored Products Research, 92, 101806. doi: 10.1016/j.jspr.2021.101806
Yu, L., Fan, Y., Ye, G., Li, J., Feng, X., Lin, K., Dong, M., & Wang, Z. (2015). Curcumin inhibits apoptosis and brain edema induced by hypoxia-hypercapnia brain damage in rat models. American Journal of the Medical Sciences, 349(6), 521–525. doi: 10.1097/MAJ.0000000000000457